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1 Topological and metric spaces

1.1 Basic Definitions

Definition 1.1 (Topology). Let S be a set. A subset T of the set P(S) of
subsets of S is called a topology iff it has the following properties:

• ∅ ∈ T and S ∈ T .

• Let {Ui}i∈I be a family of elements in T . Then
⋃

i∈I Ui ∈ T .

• Let U, V ∈ T . Then U ∩ V ∈ T .

A set equipped with a topology is called a topological space. The elements
of T are called the open sets in S. A complement of an open set in S is
called a closed set.

Definition 1.2. Let S be a topological space and x ∈ S. Then a subset
U ⊆ S is called a neighborhood of x iff it contains an open set which in turn
contains x.

Definition 1.3. Let S be a topological space and U a subset. The closure
U of U is the smallest closed set containing U . The interior

◦
U of U is the

largest open set contained in U .

Definition 1.4 (base). Let T be a topology. A subset B of T is called a
base of T iff the elements of T are precisely the unions of elements of B. It
is called a subbase iff the elements of T are precisely the finite intersections
of unions of elements of B.

Proposition 1.5. Let S be a set and B a subset of P(S). B is the base of
a topology on S iff it satisfies all of the following properties:

• ∅ ∈ B.

• For every x ∈ S there is a set U ∈ B such that x ∈ U .

• Let U, V ∈ B. Then there exits a family {Wα}α∈A of elements of B
such that U ∩ V =

⋃
α∈AWα.

Proof. Exercise.

Definition 1.6 (Filter). Let S be a set. A subset F of the set P(S) of
subsets of S is called a filter iff it has the following properties:

• ∅ /∈ F and S ∈ F .
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• Let U, V ∈ F . Then U ∩ V ∈ F .

• Let U ∈ F and U ⊆ V ⊆ S. Then V ∈ F .

Definition 1.7. Let F be a filter. A subset B of F is called a base of F iff
every element of F contains an element of B.

Proposition 1.8. Let S be a set and B ⊆ P(S). Then B is the base of a
filter on S iff it satisfies the following properties:

• ∅ /∈ B and B 6= ∅.

• Let U, V ∈ B. Then there exists W ∈ B such that W ⊆ U ∩ V .

Proof. Exercise.

Let S be a topological space and x ∈ S. It is easy to see that the set of
neighborhoods of x forms a filter. It is called the filter of neighborhoods of x
and denoted by Nx. The family of filters of neighborhoods in turn encodes
the topology:

Proposition 1.9. Let S be a topological space and {Nx}x∈S the family of
filters of neighborhoods. Then a subset U of S is open iff for every x ∈ U ,
there is a set Wx ∈ Nx such that Wx ⊆ U .

Proof. Exercise.

Proposition 1.10. Let S be a set and {Fx}x∈S an assignment of a filter to
every point in S. Then this family of filters are the filters of neighborhoods
of a topology on S iff they satisfy the following properties:

1. For all x ∈ S, every element of Fx contains x.

2. For all x ∈ S and U ∈ Fx, there exists W ∈ Fx such that U ∈ Fy for
all y ∈ W .

Proof. If {Fx}x∈S are the filters of neighborhoods of a topology it is clear
that the properties are satisfied: 1. Every neighborhood of a point contains
the point itself. 2. For a neighborhood U of x take W to be the interior of
U . Then W is a neighborhood for each point in W .

Conversely, suppose {Fx}x∈S satisfies Properties 1 and 2. Given x we
define an open neighborhood of x to be an element U ∈ Fx such that U ∈ Fy

for all y ∈ U . This definition is not empty since at least S itself is an open
neighborhood of every point x in this way. Moreover, for any y ∈ U , by the
same definition, U is an open neighborhood of y. Now take y /∈ U . Then,
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by Property 1, U is not an open neighborhood of y. Thus, we obtain a good
definition of open set: An open set is a set that is an open neighborhood for
one (and thus any) of its points. We also declare the empty set to be open.

We proceed to verify the axioms of a topology. Property 1 of Defi-
nition 1.1 holds since S is open and we have declared the empty set to
be open. Let {Uα}α∈I be a family of open sets and consider their union
U =

⋃
α∈I Uα. Assume U is not empty (otherwise it is trivially open) and

pick x ∈ U . Thus, there is α ∈ I such that x ∈ Uα. But then Uα ∈ Fx

and also U ∈ Fx. This is true for any x ∈ U . Hence, U is open. Consider
now open sets U and V . Assume the intersection U ∩ V to be non-empty
(otherwise its openness is trivial) and pick a point x in it. Then U ∈ Fx

and V ∈ Fx and therefore U ∩ V ∈ Fx. The same is true for any point in
U ∩ V , hence it is open.

It remains to show that {Fx}x∈S are the filters of neighborhoods for the
topology just defined. It is already clear that any open neighborhood of
a point x is contained in Fx. We need to show that every element of Fx

contains an open neighborhood of x. Take U ∈ Fx. We define W to be
the set of points y such that U ∈ Fy. This cannot be empty as x ∈ W .
Moreover, Property 1 implies W ⊆ U . Let y ∈ W , then U ∈ Fy and we can
apply Property 2 to obtain a subset V ⊆ W with V ∈ Fy. But this implies
W ∈ Fy. Since the same is true for any y ∈ W we find that W is an open
neighborhood of x. This completes the proof.

Definition 1.11 (Continuity). Let S, T be topological spaces. A map f :
S → T is called continuous at p ∈ S iff f−1(Nf(p)) ⊆ Np. f is called
continuous iff it is continuous at every p ∈ S. We denote the space of
continuous maps from S to T by C(S, T ).

Proposition 1.12. Let S, T be topological spaces and f : S → T a map.
Then, f is continuous iff for every open set U ∈ T the preimage f−1(U) in
S is open.

Proof. Exercise.

Proposition 1.13. Let S, T, U be topological spaces, f ∈ C(S, T ) and g ∈
C(T,U). Then, the composition g ◦ f : S → U is continuous.

Proof. Immediate.

Definition 1.14. Let S, T be topological spaces. A bijection f : S → T
is called a homeomorphism iff f and f−1 are both continuous. If such a
homeomorphism exists S and T are called homeomorphic.
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Definition 1.15. Let T1, T2 be topologies on the set S. Then, T1 is called
finer than T2 and T2 is called coarser than T1 iff all open sets of T2 are also
open sets of T1.

Definition 1.16 (Induced Topology). Let S be a topological space and U
a subset. Consider the topology given on U by the intersection of each open
set on S with U . This is called the induced topology on U .

Definition 1.17 (Product Topology). Let S be the cartesian product S =∏
α∈I Sα of a family of topological spaces. Consider subsets of S of the form∏
α∈I Uα where finitely many Uα are open sets in Sα and the others coincide

with the whole space Uα = Sα. These subsets form the base of a topology
on S which is called the product topology.

Exercise 1. Let S be the cartesian product S =
∏

α∈I Sα of a family of
topological spaces. Show that the product topology is the coarsest topology
on S that makes all projections S → Sα continuous.

Proposition 1.18. Let S, T,X be topological spaces and f ∈ C(S × T,X).
Then the map fx : T → X defined by fx(y) = f(x, y) is continuous for every
x ∈ S.

Proof. Fix x ∈ S. Let U be an open set in X. We want to show that
W := f−1

x (U) is open. We do this by finding for any y ∈ W an open
neighborhood of y contained in W . If W is empty we are done, hence
assume that this is not so. Pick y ∈ W . Then (x, y) ∈ f−1(U) with f−1(U)
open by continuity of f . Since S×T carries the product topology there must
be open sets Vx ⊆ S and Vy ⊆ T with x ∈ Vx, y ∈ Vy and Vx ×Vy ⊆ f−1(U).
But clearly Vy ⊆ W and we are done.

Definition 1.19 (Quotient Topology). Let S be a topological space and
∼ an equivalence relation on S. Then, the quotient topology on S/∼ is the
finest topology such that the quotient map S � S/∼ is continuous.

Definition 1.20. Let S, T be topological spaces and f : S → T . For a ∈ S
we say that f is open at a iff for every neighborhood U of a the image f(U)
is a neighborhood of f(a). We say that f is open iff it is open at every a ∈ S.

Proposition 1.21. Let S, T be topological spaces and f : S → T . f is open
iff it maps any open set to an open set.

Proof. Straightforward.
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Definition 1.22 (Ultrafilter). Let F be a filter. We call F an ultrafilter iff
F cannot be enlarged as a filter. That is, given a filter F ′ such that F ⊆ F ′

we have F ′ = F .

Lemma 1.23. Let S be a set, F an ultrafilter on S and U ⊆ S such that
U ∩ V 6= ∅ for all V ∈ F . Then U ∈ F .

Proof. Let F be an ultrafilter on S and U ⊆ S such that U ∩ V 6= ∅ for all
V ∈ F . Then, B := {U ∩ V : V ∈ F} forms the base of a filter F ′ such that
F ⊆ F ′ and U ∈ F ′. But since F is ultrafilter we have F = F ′ and hence
U ∈ F .

Proposition 1.24 (Ultrafilter lemma). Let F be a filter. Then there exists
an ultrafilter F ′ such that F ⊆ F ′.

Proof. Exercise.Use Zorn’s Lemma.

1.2 Some properties of topological spaces

In a topological space it is useful if two distinct points can be distinguished
by the topology. A strong form of this distinguishability is the Hausdorff
property.

Definition 1.25 (Hausdorff). Let S be a topological space. Assume that
given any two distinct points x, y ∈ S we can find open sets U, V ⊂ S such
that x ∈ U and y ∈ V and U ∩V = ∅. Then, S is said to have the Hausdorff
property. We also say that S is a Hausdorff space.

Definition 1.26. A topological space S is called completely regular iff given
a closed subset C ⊆ S and a point p ∈ S\C there exists a continuous function
f : S → [0, 1] such that f(C) = {0} and f(p) = 1.

Definition 1.27. A topological space is called normal iff it is Hausdorff
and if given two disjoint closed sets A and B there exist disjoint open sets
U , V such that A ⊆ U and B ⊆ V .

Lemma 1.28. Let S be a normal topological space, U an open subset and
C a closed subset such that C ⊆ U . Then, there exists an open subset U ′

and a closed subset C ′ such that C ⊆ U ′ ⊆ C ′ ⊆ U .

Proof. Exercise.

Theorem 1.29 (Uryson’s Lemma). Let S be a normal topological space
and A, B disjoint closed subsets. Then, there exists a continuous function
f : S → [0, 1] such that f(A) = {0} and f(B) = {1}.
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Proof. Let C0 := A and U1 := S \B. Applying Lemma 1.28 we find an open
subset U1/2 and a closed subset C1/2 such that

C0 ⊆ U1/2 ⊆ C1/2 ⊆ U1.

Performing the same operation on the pairs C0 ⊆ U1/2 and C1/2 ⊆ U1 we
obtain

C0 ⊆ U1/4 ⊆ C1/4 ⊆ U1/2 ⊆ C1/2 ⊆ U3/4 ⊆ C3/4 ⊆ U1.

We iterate this process, at step n replacing the pairs C(k−1)/2n ⊆ Uk/2n by
C(k−1)/2n ⊆ U(2k−1)/2n+1 ⊆ C(2k−1)/2n+1 ⊆ Uk/2n for all k ∈ {1, . . . , n}.

Now define

f(p) :=
{

1 if p ∈ B

inf{x ∈ (0, 1] : p ∈ Ux} if p /∈ B

Obviously f(B) = {1} and also f(A) = {0}. To show that f is continuous it
suffices to show that f−1([0, a)) and f−1((b, 1]) are continuous for 0 < a ≤ 1
and 0 ≤ b < 1. But,

f−1([0, a)) =
⋃

x<a

Ux, f−1((b, 1]) =
⋃
x>b

(S \ Cx).

Corollary 1.30. Every normal space is completely regular.

Definition 1.31. Let S be a topological space. S is called first-countable iff
for each point in S there exists a countable base of its filter of neighborhoods.
S is called second-countable iff the topology of S admits a countable base.

Definition 1.32. Let S be a topological space and U, V ⊆ S subsets. U is
called dense in V iff V ⊆ U .

Definition 1.33 (separable). A topological space is called separable iff it
contains a countable dense subset.

Proposition 1.34. A topological space that is second-countable is separable.

Proof. Exercise.

Definition 1.35 (open cover). Let S be a topological space and U ⊆ S
a subset. A family of open sets {Uα}α∈A is called an open cover of U iff
U ⊆

⋃
α∈A Uα.
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Proposition 1.36. Let S be a second-countable topological space and U ⊆ S
a subset. Then, every open cover of U contains a countable subcover.

Proof. Exercise.

Definition 1.37 (compact). Let S be a topological space and U ⊆ S a
subset. U is called compact iff every open cover of U contains a finite
subcover.

Definition 1.38. Let S be a topological space and U ⊆ S a subset. Then,
U is called relatively compact in S iff the closure of U in S is compact.

Proposition 1.39. A closed subset of a compact space is compact. A com-
pact subset of a Hausdorff space is closed.

Proof. Exercise.

Proposition 1.40. The image of a compact set under a continuous map is
compact.

Proof. Exercise.

Lemma 1.41. Let T1 be a compact Hausdorff space, T2 be a Hausdorff space
and f : T1 → T2 a continuous bijective map. Then, f is a homeomorphism.

Proof. The image of a compact set under f is compact and hence closed
in T2. But every closed set in T1 is compact, so f is open and hence a
homeomorphism.

Lemma 1.42. Let T be a Hausdorff topological space and C1, C2 disjoint
compact subsets of T . Then, there are disjoint open subsets U1, U2 of T
such that C1 ⊆ U1 and C2 ⊆ U2. In particular, if T is compact, then it is
normal.

Proof. We first show a weaker statement: Let C be a compact subset of T
and p /∈ C. Then there exist disjoint open sets U and V such that p ∈ U and
C ⊆ V . Since T is Hausdorff, for each point q ∈ C there exist disjoint open
sets Uq and Vq such that p ∈ Uq and q ∈ Vq. The family of sets {Vq}q∈C

defines an open covering of C. Since C is compact there is a finite subset
S ⊆ C such that the family {Vq}q∈S already covers C. Define U :=

⋂
q∈S Uq

and V :=
⋃

q∈S Vq. These are open sets with the desired properties.
We proceed to the prove the first statement of the lemma. By the pre-

vious demonstration, for each point p ∈ C1 there are disjoint open sets Up

and Vp such that p ∈ Up and C2 ⊆ Vp. The family of sets {Up}p∈C1 defines
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an open covering of C1. Since C1 is compact there is a finite subset S ⊆ C1
such that the family {Up}p∈S already covers C1. Define U1 :=

⋃
p∈S Up and

U2 :=
⋂

p∈S Vp.
For the second statement of the lemma observe that if T is compact,

then every closed subset is compact.

Definition 1.43. A topological space is called locally compact iff every point
has a compact neighborhood.

Definition 1.44. A topological space is called σ-compact iff it is locally
compact and admits a covering by countably many compact subsets.

Definition 1.45. Let T be a topological space. A compact exhaustion of
T is a sequence {Ui}i∈N of open and relatively compact subsets such that
Ui ⊆ Ui+1 for all i ∈ N and

⋃
i∈N Ui = T .

Proposition 1.46. A topological space admits a compact exhaustion iff it
is σ-compact.

Proof. Suppose the topological space T is σ-compact. Then there exists
a sequence {Kn}n∈N of compact subsets such that

⋃
n∈N Kn = T . Since

T is locally compact, every point possesses an open and relatively compact
neighborhood. (Take an open subneighborhood of a compact neighborhood.)
We cover K1 by such open and relatively compact neighborhoods around
every point. By compactness a finite subset of those already covers K1.
Their union, which we call U1, is open and relatively compact. We proceed
inductively. Suppose we have constructed the open and relatively compact
set Un. Consider the compact set Un ∪ Kn+1. Covering it with open and
relatively compact neighborhoods and taking the union of a finite subcover
we obtain the open and relatively compact set Un+1. It is then clear that
the sequence {Un}n∈N obtained in this way provides a compact exhaustion
of T since Ui ⊆ Ui+1 for all i ∈ N and T =

⋃
n∈NKn ⊆

⋃
n∈N Un.

Conversely, suppose T is a topological space and {Un}n∈N is a compact
exhaustion of T . Then, the sequence {Un}n∈N provides a countable covering
of T by compact sets. Also, given p ∈ T there exists n ∈ N such that
p ∈ Un. Then, the compact set Un is a neighborhood of p. That is, T is
locally compact.

Proposition 1.47. Let T be a topological space, K ⊆ T a compact subset
and {Un}n∈N a compact exhaustion of T . Then, there exists n ∈ N such that
K ⊆ Un.

Proof. Exercise.
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Exercise 2 (One-point compactification). Let S be a locally compact Haus-
dorff space. Let S̃ := S ∪ {∞} to be the set S with an extra element ∞
ajoint. Define a subset U of S̃ to be open iff either U is an open subset of
S or U is the complement of a compact subset of S. Show that this makes
S̃ into a compact Hausdorff space.

1.3 Sequences and convergence

Definition 1.48 (convergence of sequences). Let x := {xn}n∈N be a se-
quence of points in a topological space S. We say that x converges to p ∈ S
iff for any neighborhood U of p there is a number n ∈ N such that xk ∈ U
for all k ≥ n. Then, p is said to be a limit of x. We also say that p ∈ S
is accumulation point of x iff for every neighborhood U of p, xk ∈ U for
infinitely many k ∈ N.

Definition 1.49. Let S be a topological space and U ⊆ S a subset. Con-
sider the set BU of sequences of elements of U . Then the set U s consisting
of the points to which some element of BU converges is called the sequential
closure of U .

Proposition 1.50. Let S be a topological space and U ⊆ S a subset. Then,
U ⊆ U

s ⊆ U . If, moreover, S is first-countable, then U
s = U .

Proof. Exercise.

Proposition 1.51. Let S, T be topological spaces and f : S → T . If f
is continuous, then for any p ∈ S and sequence {xn}n∈N converging to p,
the sequence f{(xn)}n∈N in T converges to f(p). Conversely, if S is first-
countable and for any p ∈ S and sequence {xn}n∈N converging to p, the
sequence f{(xn)}n∈N in T converges to f(p), then f is continuous.

Proof. Exercise.

Proposition 1.52. Let S be Hausdorff space and {xn}n∈N a sequence in S
which converges to a point p ∈ S. Then, {xn}n∈N does not converge to any
other point in S.

Proof. Exercise.

Definition 1.53. Let S be a topological space and U ⊆ S a subset. U
is called limit point compact iff every sequence in U has an accumulation
point. U is called sequentially compact iff every sequence in U contains a
converging subsequence.
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Proposition 1.54. Let S be a first-countable topological space and x =
{xn}n∈N a sequence in S with accumulation point p. Then, x has a subse-
quence that converges to p.

Proof. By first-countability choose a countable base {Un}n∈N of the filter of
neighborhoods at p. Now consider the family {Wn}n∈N of open neighbor-
hoods Wn :=

⋂n
k=1 Uk at p. It is easy to see that this is again a countable

neighborhood base at p. Moreover, it has the property that Wn ⊆ Wm if
n ≥ m. Now, Choose n1 ∈ N such that xn1 ∈ W1. Recursively, choose
nk+1 > nk such that xnk+1 ∈ Wk+1. This is possible since Wk+1 contains
infinitely many points of x. Let V be a neighborhood of p. There exists
some k ∈ N such that Uk ⊆ V . By construction, then Wm ⊆ Wk ⊆ Uk

for all m ≥ k and hence xnm ∈ V for all m ≥ k. Thus, the subsequence
{xnm}m∈N converges to p.

Proposition 1.55. Sequential compactness implies limit point compactness.
In a first-countable space the converse is also true.

Proof. Exercise.

Proposition 1.56. A compact space is limit point compact.

Proof. Consider a sequence x in a compact space S. Suppose x does not have
an accumulation point. Then, for each point p ∈ S we can choose an open
neighborhood Up which contains only finitely many points of x. However, by
compactness, S is covered by finitely many of the sets Up. But their union
can only contain a finite number of points of x, a contradiction.

1.4 Filters and convergence

Definition 1.57 (convergence of filters). Let S be a topological space and
F a filter on a subset A of S. F is said to converge to p ∈ S iff every
neighborhood of p is contained in F , i.e., Np ⊆ F . Then, x is said to be a
limit of x. Also, p ∈ S is called accumulation point of F iff p ∈

⋂
U∈F U .

Proposition 1.58. Let S be a topological space and F a filter on a subset
A of S converging to p ∈ S. Then, p is accumulation point of F .

Proof. Exercise.

Proposition 1.59. Set S be a topological space and F ,F ′ filters on a subset
A of S such that F ⊆ F ′. If p ∈ S is accumulation point of F ′, then it is
also accumulation point of F . If F converges to p ∈ S, then so does F ′.
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Proof. Immediate.

Let x = {xn}n∈N be a sequence of points in a topological space S. We
define the filter Fx associated with this sequence as follows: Fx contains
all the subsets U of S such that U contains all xn, except possibly finitely
many.

Proposition 1.60. Let x := {xn}n∈N be a sequence of points in a topological
space S. Then x converges to a point p ∈ S iff the associated filter Fx

converges to p. Also, p ∈ S is accumulation point of x iff it is accumulation
point of Fx.

Proof. Exercise.

Proposition 1.61. Let S be a topological space and U ⊆ S a subset. Con-
sider the set AU of filters on U . Then, the closure U of U coincides with
the set of points to which some element in AU converges.

Proof. If U = ∅, then AU is empty and the proof is trivial. Assume the
contrary. If x ∈ U , then the intersection of U with the filter Nx of neigh-
borhoods of x is a filter on U that converges to x as desired. If x /∈ U , then
there exists a neighborhood V of x such that U ∩ V = ∅. So no filter in U
can contain V .

Proposition 1.62. Let S, T be topological spaces and f : S → T . If f
is continuous, then for any p ∈ S and filter F converging to p, the filter
generated by f(F) in T converges to f(p). Conversely, if for any p ∈ S and
filter F converging to p, the filter generated by f(F) in T converges to f(p),
then f is continuous.

Proof. Exercise.

Proposition 1.63. Let S be a Hausdorff topological space, F a filter on a
subset A of S converging to a point p ∈ S. Then F does not converge to any
other point in S.

Proof. Exercise.

Proposition 1.64. Let S be a topological space and K ⊆ S a subset. Then,
K is compact iff every filter in K has at least one accumulation point in K.
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Proof. Let K ⊆ S be compact. We suppose that there is a filter F on
K that has no accumulation point. For each U ∈ F consider the open
set OU := S \ U . By assumption, these open sets cover K. Since K is
compact, there must be a finite subset {U1, . . . , Un} of elements of F such
that {OU1 , . . . , OUn} covers K. But this implies

⋂n
i=1 Ui = ∅ and thus, in

particular, also
⋂n

i=1 Ui = ∅, contradicting the fact that F is a filter. Thus,
any filter on K must have an accumulation point.

Now suppose that K ⊆ S is not compact. Then, there exists a cover of
K by open sets {Uα}α∈A which does not admit any finite subcover. Now
consider finite intersections of the sets Cα := K \ Uα. These are non-empty
and form the base of a filter in K. But this filter clearly has no accumulation
point. Thus, if every filter in K is to posses an accumulation point, K must
be compact.

1.5 Metric and pseudometric spaces

Definition 1.65. Let S be a set and d : S × S → R+
0 a map with the

following properties:

• d(x, y) = d(y, x) ∀x, y ∈ S. (symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ S. (triangle inequality)

• d(x, x) = 0 ∀x ∈ S.

Then d is called a pseudometric on S. S is also called a pseudometric space.
Suppose d also satisfies

• d(x, y) = 0 =⇒ x = y ∀x, y ∈ S. (definiteness)

Then d is called a metric on S and S is called a metric space.

Definition 1.66. Let S be a pseudometric space, x ∈ S and r > 0. Then
the set Br(x) := {y ∈ S : d(x, y) < r} is called the open ball of radius r
centered around x in S. The set Br(x) := {y ∈ S : d(x, y) ≤ r} is called the
closed ball of radius r centered around x in S.

Proposition 1.67. Let S be a pseudometric space. Then, the open balls
in S together with the empty set form the basis of a topology on S. This
topology is first-countable and such that closed balls are closed. Moreover,
the topology is Hausdorff iff S is metric.

Proof. Exercise.
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Definition 1.68. A topological space is called (pseudo)metrizable iff there
exists a (pseudo)metric such that the open balls given by the (pseudo)metric
are a basis of its topology.

Proposition 1.69. In a pseudometric space any open ball can be obtained
as the countable union of closed balls. Similarly, any closed ball can be
obtained as the countable intersection of open balls.

Proof. Exercise.

Proposition 1.70. Let S be a set equipped with two pseudometrics d1 and
d2. Then, the topology generated by d2 is finer than the topology generated by
d1 iff for all x ∈ S and r1 > 0 there exists r2 > 0 such that B2

r2(x) ⊆ B1
r1(x).

In particular, d1 and d2 generate the same topology iff the condition holds
both ways.

Proof. Exercise.

Proposition 1.71 (epsilon-delta criterion). Let S, T be pseudometric spaces
and f : S → T a map. Then, f is continuous at x ∈ S iff for every ε > 0
there exists δ > 0 such that f(Bδ(x)) ⊆ Bε(f(x)).

Proof. Exercise.

1.6 Elementary properties of pseudometric spaces

Proposition 1.72. Every metric space is normal.

Proof. Let A, B be disjoint closed sets in the metric space S. For each x ∈ A
choose εx > 0 such that Bεx(x) ∩ B = ∅ and for each y ∈ B choose εy > 0
such that Bεy (y)∩A = ∅. Then, for any pair (x, y) with x ∈ A and y ∈ B we
have Bεx/2(x) ∩ Bεy/2(y) = ∅. Consider the open sets U :=

⋃
x∈ABεx/2(x)

and V :=
⋃

y∈B Bεy/2(y). Then, U ∩ V = ∅, but A ⊆ U and B ⊆ V . So S is
normal.

Proposition 1.73. Let S be a pseudometric space and x := {xn}n∈N a
sequence in S. Then x converges to p ∈ S iff for any ε > 0 there exists an
n0 ∈ N such that d(xn, p) < ε for all n ≥ n0.

Proof. Immediate.

Definition 1.74. Let S be a pseudometric space and x := {xn}n∈N a se-
quence in S. Then x is called a Cauchy sequence iff for all ε > 0 there exists
an n0 ∈ N such that for all n,m ≥ n0 : d(xn, xm) < ε.
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Proposition 1.75. Any converging sequence in a pseudometric space is a
Cauchy sequence.

Proof. Exercise.

Proposition 1.76. Suppose x is a Cauchy sequence in a pseudometric
space. If p is accumulation point of x then x converges to p.

Proof. Exercise.

Definition 1.77. Let S be a pseudometric space and U ⊆ S a subset. If
every Cauchy sequence in U converges to a point in U , then U is called
complete.

Proposition 1.78. A complete subset of a metric space is closed. A closed
subset of a complete pseudometric space is complete.

Proof. Exercise.

Definition 1.79 (Totally boundedness). Let S be a pseudometric space. A
subset U ⊆ S is called totally bounded iff for any r > 0 the set U admits a
cover by finitely many open balls of radius r.

Proposition 1.80. A subset of a pseudometric space is compact iff it is
complete and totally bounded.

Proof. We first show that compactness implies totally boundedness and com-
pleteness. Let U be a compact subset. Then, for r > 0 cover U by open balls
of radius r centered at every point of U . Since U is compact, finitely many
balls will cover it. Hence, U is totally bounded. Now, consider a Cauchy
sequence x in U . Since U is compact x must have an accumulation point
p ∈ U (Proposition 1.56) and hence (Proposition 1.76) converge to p. Thus,
U is complete.

We proceed to show that completeness together with totally bounded-
ness imply compactness. Let U be a complete and totally bounded subset.
Assume U is not compact and choose a covering {Uα}α∈A of U that does
not admit a finite subcovering. On the other hand, U is totally bounded and
admits a covering by finitely many open balls of radius 1/2. Hence, there
must be at least one such ball B1 such that C1 := B1 ∩ U is not covered
by finitely many Uα. Choose a point x1 in C1. Observe that C1 itself is
totally bounded. Inductively, cover Cn by finitely many open balls of radius
2−(n+1). For at least one of those, call it Bn+1, Cn+1 := Bn+1 ∩ Cn is not
covered by finitely many Uα. Choose a point xn+1 in Cn+1. This process



Robert Oeckl – FA NOTES – 05/12/2011 17

yields a Cauchy sequence x := {xk}k∈N. Since U is complete the sequence
converges to a point p ∈ U . There must be α ∈ A such that p ∈ Uα. Since
Uα is open there exists r > 0 such that B(p, r) ⊆ Uα. This implies, Cn ⊆ Uα

for all n ∈ N such that 2−n+1 < r. However, this is a contradiction to the
Cn not being finitely covered. Hence, U must be compact.

Proposition 1.81. The notions of compactness, limit point compactness
and sequential compactness are equivalent in a pseudometric space.

Proof. Exercise.

Proposition 1.82. A totally bounded pseudometric space is second-countable.

Proof. Exercise.

Proposition 1.83. The notions of separability and second-countability are
equivalent in a pseudometric space.

Proof. Exercise.

Theorem 1.84 (Baire’s Theorem). Let S be a complete metric space and
{Un}n∈N a sequence of open and dense subsets of S. Then, the intersection⋂

n∈N Un is dense in S.

Proof. Set U :=
⋂

n∈N Un. Let V be an arbitrary open set in S. It suffices
to show that V ∩ U 6= ∅. To this end we construct a sequence {xn}n∈N
of elements of S and a sequence {εn}n∈N of positive numbers. Choose
x1 ∈ U1 ∩ V and then 0 < ε1 ≤ 1 such that Bε1(x1) ⊆ U1 ∩ V . Now,
consecutively choose xn+1 ∈ Un+1 ∩ Bεn/2(xn) and 0 < εn+1 < 2−n such
that Bεn+1(xn+1) ⊆ Un+1 ∩Bεn(xn). The sequence {xn}n∈N is Cauchy since
by construction d(xn, xn+1) < 2−n for all n ∈ N. So by completeness it
converges to some point x ∈ S. Indeed, x ∈ Bε1(x1) ⊆ V . On the other
hand, x ∈ Bεn(xn) ⊆ Un for all n ∈ N and hence x ∈ U . This completes the
proof.

Proposition 1.85. Let S be equipped with a pseudometric d. Then p ∼
q ⇐⇒ d(p, q) = 0 for p, q ∈ S defines an equivalence relation on S. The
prescription d̃([p], [q]) := d(p, q) for p, q ∈ S is well defined and yields a
metric d̃ on the quotient space S/∼. The topology induced by this metric
on S/∼ is the quotient topology with respect to that induced by d on S.
Moreover, S/∼ is complete iff S is complete.

Proof. Exercise.
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1.7 Completion of metric spaces

Often it is desirable to work with a complete metric space when one is
only given a non-complete metric space. To this end one can construct the
completion of a metric space. This is detailed in the following exercise.

Exercise 3. Let S be a metric space.

• Let x := {xn}n∈N and y := {yn}n∈N be Cauchy sequences in S. Show
that the limit limn→∞ d(xn, yn) exists.

• Let T be the set of Cauchy sequences in S. Define the function d̃ :
T × T → R+

0 by d̃(x, y) := limn→∞ d(xn, yn). Show that d̃ defines a
pseudometric on T .

• Show that T is complete.

• Define S as the metric quotient T/∼ as in Proposition 1.85. Then, S
is complete.

• Show that there is a natural isometric embedding (i.e., a map that
preserves the metric) iS : S → S. Furthermore, show that this is a
bijection iff S is complete.

Definition 1.86. The metric space S constructed above is called the com-
pletion of the metric space S.

Proposition 1.87 (Universal property of completion). Let S be a metric
space, T a complete metric space and f : S → T an isometric map. Then,
there is a unique isometric map f : S → T such that f = f◦iS. Furthermore,
the closure of f(S) in T is equal to f(S).

Proof. Exercise.
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2 Vector spaces with additional structure
In the following K denotes a field which might be either R or C.

Definition 2.1. Let V be a vector space over K. A subset A of V is called
balanced iff for all v ∈ A and all λ ∈ K with |λ| ≤ 1 the vector λv is contained
in A. A subset A of V is called convex iff for all x, y ∈ V and t ∈ [0, 1] the
vector (1 − t)x+ ty is in A. Let A be a subset of V . Consider the smallest
subset of V which is convex and which contains A. This is called the convex
hull of A, denoted conv(A).

Proposition 2.2. (a) Intersections of balanced sets are balanced. (b) The
sum of two balanced sets is balanced. (c) A scalar multiple of a balanced set
is balanced.

Proof. Exercise.

Proposition 2.3. Let V be vector space and A a subset. Then

conv(A) =
{

n∑
i=1

λixi : λi ∈ [0, 1], xi ∈ A,
n∑

i=1
λi = 1

}
.

Proof. Exercise.

We denote the space of linear maps between a vector space V and a
vector space W by L(V,W ).

2.1 Topological vector spaces

Definition 2.4. A set V that is equipped both with a vector space structure
over K and a topology is called a topological vector space (tvs) iff the vector
addition + : V × V → V and the scalar multiplication · : K × V → V are
both continuous. (Here the topology on K is the standard one.)

Proposition 2.5. Let V be a tvs, λ ∈ K\0, w ∈ V . The maps V → V : v 7→
λv and V → V : v 7→ v+w are automorphisms of V as a tvs. In particular,
the topology T of V is invariant under rescalings and translations: λT = T
and T + w = T . In terms of filters of neighborhoods, λNv = Nλv and
Nv + w = Nv+w for all v ∈ V .

Proof. It is clear that non-zero scalar multiplication and translation are vec-
tor space automorphisms. To see that they are also continuous use Propo-
sition 1.18. The inverse maps are of the same type hence also continuous.
Thus we have homeomorphisms. The scale- and translation invariance of
the topology follows.
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Note that this implies that the topology of a tvs is completely determined
by the filter of neighborhoods of one of its points, say 0.

Definition 2.6. Let V be a tvs and U a subset. U is called bounded iff for
every neighborhood W of 0 there exists λ ∈ R+ such that U ⊆ λW .

Remark: Changing the allowed range of λ in the definition of bound-
edness from R+ to K leads to an equivalent definition, i.e., is not weaker.
However, the choice of R+ over K is more convenient in certain applications.

Proposition 2.7. Let V be a tvs. Then:

1. Every point set is bounded.

2. Every neighborhood of 0 contains a balanced subneighborhood of 0.

3. Let U be a neighborhood of 0. Then there exists a subneighborhood W
of 0 such that W +W ⊆ U .

Proof. We start by demonstrating Property 1. Let x ∈ V and U some
open neighborhood of 0. Then Z := {(λ, y) ∈ K × V : λy ∈ U} is open
by continuity of multiplication. Also (0, x) ∈ Z so that by the product
topology there exists an ε > 0 and an open neighborhood W of x in V such
that Bε(0) × W ⊆ Z. In particular, there exists µ > 0 such that µx ∈ U ,
i.e., {x} ⊆ µ−1U as desired.

We proceed to Property 2. Let U be an open neighborhood of 0. By
continuity Z := {(λ, x) ∈ K × V : λx ∈ U} is open. By the product
topology, there are open neighborhoods X of 0 ∈ K and W of 0 ∈ V such
that X × W ⊆ Z. Thus, X · W ⊆ U . Now X contains an open ball of
some radius ε > 0 around 0 in K. Set Y := Bε(0) · W . This is an (open)
neighborhood of 0 in V , it is contained in U and it is balanced.

We end with Property 3. Let U be an open neighborhood of 0. By
continuity Z := {(x, y) ∈ V × V : x + y ∈ U} is open. By the product
topology, there are open neighborhoods W1 and W2 of 0 such that W1×W2 ⊆
Z. This means W1 +W2 ⊆ U . Now define W := W1 ∩W2.

Proposition 2.8. Let V be a vector space and F a filter on V . Then F
is the filter of neighborhoods of 0 for a compatible topology on V iff 0 is
contained in every element of F and λF = F for all λ ∈ K \ {0} and F
satisfies the properties of Proposition 2.7.

Proof. It is already clear that the properties in question are necessary for F
to be the filter of neighborhoods of 0 of V . It remains to show that they are
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sufficient. If F is to be the filter of neighborhoods of 0 then, by translation
invariance, Fx := F + x must be the filter of neighborhoods of the point x.
We show that the family of filters {Fx}x∈V does indeed define a topology
on V . To this end we will use Proposition 1.10. Property 1 is satisfied
by assumption. It remains to show Property 2. By translation invariance
it will be enough to consider x = 0. Suppose U ∈ F . Using Property 3
of Proposition 2.7 there is W ∈ F such that W + W ⊆ U . We claim that
Property 2 of Proposition 1.10 is now satisfied with this choice of W . Indeed,
let y ∈ W then y +W ∈ Fy and y +W ⊆ U so U ∈ Fy as required.

We proceed to show that the topology defined in this way is compatible
with the vector space structure. Take an open set U ⊆ V and consider
its preimage Z = {(x, y) ∈ V × V : x + y ∈ U} under vector addition.
Take some point (x, y) ∈ Z. U − x − y is an open neighborhood of 0. By
Property 3 of Proposition 2.7 there is an open neighborhood W of 0 such
that W + W ⊆ U − x − y, i.e., (x + W ) + (y + W ) ⊆ U . But x + W is
an open neighborhood of x and y + W is an open neighborhood of y so
(x+W ) × (y+W ) is an open neighborhood of (x, y) in V × V contained in
Z. Hence vector addition is continuous.

We proceed to show continuity of scalar multiplication. Consider an
open set U ⊆ V and consider its preimage Z = {(λ, x) ∈ K × V : λx ∈ U}
under scalar multiplication. Take some point (λ, x) ∈ Z. U − λx is an
open neighborhood of 0 in V . By Property 3 of Proposition 2.7 there is an
open neighborhood W of 0 such that W + W = U − λx. By Property 2
of Proposition 2.7 there exists a balanced subneighborhood X of W . By
Property 1 of Proposition 2.7 (boundedness of points) there exists ε > 0
such that εx ∈ X. Now define Y := (ε+ |λ|)−1X. Note that scalar multiples
of (open) neighborhoods of 0 are (open) neighborhoods of 0 by assumption.
Hence Y is open since X is. Thus Bε(λ) × (x+Y ) an open neighborhood of
(λ, x) in K×V . We claim that it is contained in Z. First observe that since
X is balanced, Bε(0) ·x ⊆ X. Similarly, we have Bε(λ) ·Y ⊆ Bε+|λ|(0) ·Y =
B1(0)·X ⊆ X. Thus we haveBε(0)·x+Bε(λ)·Y ⊆ X+X ⊆ W+W ⊆ U−λx.
But this implies Bε(λ) · (x+ Y ) ⊆ U as required.

Proposition 2.9. (a) The interior of a balanced set is balanced. (b) The
closure of a balanced set is balanced.

Proof. Let U be balanced and let λ ∈ K with 0 < |λ| ≤ 1. It is then enough
to observe that for (a) λ

◦
U =

◦
λU ⊆

◦
U and for (b) λU = λU ⊆ U .

Proposition 2.10. In a tvs every neighborhood of 0 contains a closed and
balanced subneighborhood.
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Proof. Let U be a neighborhood of 0. By Proposition 2.7.3 there exists a
subneighborhood W ⊆ U such that W + W ⊂ U . By Proposition 2.7.2
there exists a balanced subneighborhood X ⊆ W . Let Y := X. Then, Y is
obviously a closed neighborhood of 0. Also Y is balanced by Proposition 2.9.
Finally, let y ∈ Y = X. Any neighborhood of y must intersect X. In
particular, y + X is such a neighborhood. Thus, there exist x ∈ X, z ∈ X
such that x = y+ z, i.e., y = x− z ∈ X −X = X +X ⊆ U . So, Y ⊆ U .

Proposition 2.11. (a) Subsets of bounded sets are bounded. (b) Finite
unions of bounded sets are bounded. (c) The closure of a bounded set is
bounded. (d) The sum of two bounded sets is bounded. (e) A scalar multiple
of a bounded set is bounded.

Proof. Exercise.

Definition 2.12. Let V be a tvs and C ⊆ V a subset. Then, C is called
totally bounded iff for each neighborhood U of 0 in V there exists a finite
subset F ⊆ C such that C ⊆ F + U .

Proposition 2.13. (a) Subsets of totally bounded sets are totally bounded.
(b) Finite unions of totally bounded sets are totally bounded. (c) The closure
of a totally bounded set is totally bounded. (d) The sum of two totally
bounded sets is totally bounded. (e) A scalar multiple of a totally bounded
set is totally bounded.

Proof. Exercise.

Proposition 2.14. Compact sets are totally bounded. Totally bounded sets
are bounded.

Proof. Exercise.

Let A,B be topological vector spaces. We denote the space of maps from
A to B that are linear and continuous by CL(A,B).

Definition 2.15. Let A,B be tvs. A linear map f : A → B is called bounded
iff there exists a neighborhood U of 0 in A such that f(U) is bounded. A
linear map f : A → B is called compact iff there exists a neighborhood U of
0 in A such that f(U) is compact.

Let A,B be tvs. We denote the space of maps from A to B that are
linear and bounded by BL(A,B). We denote the space of maps from A to
B that are linear and compact by KL(A,B).
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Proposition 2.16. Let A,B be tvs and f ∈ L(A,B). (a) f is continuous iff
the preimage of any neighborhood of 0 in B is a neighborhood of 0 in A. (b)
If f is continuous it maps bounded sets to bounded sets. (c) If f is bounded
then f is continuous, i.e., BL(A,B) ⊆ CL(A,B). (d) If f is compact then
f is bounded.

Proof. Exercise.

A useful property for a topological space is the Hausdorff property, i.e.,
the possibility to separate points by open sets. It is not the case that a
tvs is automatically Hausdorff. However, the way in which a tvs may be
non-Hausdorff is severely restricted. Indeed, we shall see int the following
that a tvs may be split into a part that is Hausdorff and another one that
is maximally non-Hausdorff in the sense of carrying the trivial topology.

Proposition 2.17. Let V be a tvs and C ⊆ V a vector subspace. Then, the
closure C of C is also a vector subspace of V .

Proof. Exercise.[Hint: Use Proposition 1.61.]

Proposition 2.18. Let V be a tvs. The closure of {0} in V coincides with
the intersection of all neighborhoods of 0. Moreover, V is Hausdorff iff
{0} = {0}.

Proof. Exercise.

Proposition 2.19. Let V be a tvs and C ⊆ V a vector subspace.

1. The quotient space V/C is a tvs.

2. V/C is Hausdorff iff C is closed in V .

3. The quotient map q : V → V/C is linear, continuous and open. More-
over, the quotient topology on V/C is the only topology such that q is
continuous and open.

4. The image of a base of the filter of neighborhoods of 0 in V is a base
of the filter of neighborhoods of 0 in V/C.

Proof. Exercise.

Thus, for a tvs V the exact sequence

0 → {0} → V → V/{0} → 0
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describes how V is composed of a Hausdorff piece V/{0} and a piece {0}
with trivial topology. We can express this decomposition also in terms of a
direct sum, as we shall see in the following.

A (vector) subspace of a tvs is a tvs with the subset topology. Let A and
B be tvs. Then the direct sum A ⊕ B is a tvs with the product topology.
Note that as subsets of A⊕B, both A and B are closed.

Definition 2.20. Let V be a tvs and A a subspace. Then another sub-
space B of A in V is called a topological complement iff V = A ⊕ B as tvs
(i.e., as vector spaces and as topological spaces). A is called topologically
complemented if such a topological complement B exists.

Note that algebraic complements (i.e., complements merely with respect
to the vector space structure) always exist (using the Axiom of Choice).
However, an algebraic complement is not necessarily a topological one. In-
deed, there are examples of subspaces of tvs that have no topological com-
plement.

Proposition 2.21 (Structure Theorem for tvs). Let V be a tvs and B an
algebraic complement of {0} in V . Then B is also a topological complement
of {0} in V . Moreover, B is canonically isomorphic to V/{0} as a tvs.

Proof. Exercise.

We conclude that every tvs is a direct sum of a Hausdorff tvs and a tvs
with the trivial topology.

2.2 Metrizable and pseudometrizable vector spaces

In this section we consider (pseudo)metrizable vector spaces (mvs), i.e., tvs
that admit a (pseudo)metric compatible with the topology.

Definition 2.22. A pseudometric on a vector space V is called translation-
invariant iff d(x + a, y + a) = d(x, y) for all x, y, a ∈ V . A translation-
invariant pseudometric on a vector space V is called balanced iff its open
balls around the origin are balanced.

As we shall see it will be possible to limit ourselves to balanced translation-
invariant pseudometrics on mvs. Moreover, these can be conveniently de-
scribed by pseudo-seminorms.

Definition 2.23. Let V be a vector space over K. Then a map V → R+
0 :

x 7→ ‖x‖ is called a pseudo-seminorm iff it satisfies the following properties:



Robert Oeckl – FA NOTES – 05/12/2011 25

1. For all λ ∈ K, |λ| ≤ 1 implies ‖λx‖ ≤ ‖x‖ for all x ∈ V .

2. For all x, y ∈ V : ‖x+ y‖ ≤ ‖x‖ + ‖y‖.

‖ ·‖ is called a pseudo-norm iff it satisfies in addition the following property.

3. ‖x‖ = 0 implies x = 0.

Proposition 2.24. There is a one-to-one correspondence between pseudo-
seminorms and balanced translation invariant pseudometrics on a vector
space via d(x, y) := ‖x − y‖. This specializes to a correspondence between
pseudo-norms and balanced translation invariant metrics.

Proof. Exercise.

Proposition 2.25. Let V be a vector space. The topology generated by a
pseudo-seminorm on V is compatible with the vector space structure iff for
every x ∈ V and ε > 0 there exists λ ∈ R+ such that x ∈ λBε(0).

Proof. Assume we are given a pseudo-seminorm on V that induces a com-
patible topology. It is easy to see that the stated property of the pseudo-
seminorm then follows from Property 1 in Proposition 2.7 (boundedness of
points).

Conversely, suppose we are given a pseudo-seminorm on V with the
stated property. We show that the filter N0 of neighborhoods of 0 defined
by the pseudo-seminorm has the properties required by Proposition 2.8 and
hence defines a compatible topology on V . Firstly, it is already clear that
every U ∈ N0 contains 0. We proceed to show that N0 is scale invariant. It
is enough to show that for ε > 0 and λ ∈ K \ {0} the scaled ball λBε(0) is
open. Choose a point λx ∈ λBε(0). Take δ > 0 such that ‖x‖ < ε− δ. Then
Bδ(0) + x ⊆ Bε(0). Choose n ∈ N such that 2−n ≤ |λ|. Observe that the
triangle inequality implies B2−nδ(0) ⊆ 2−nBδ(0) (for arbitrary δ and n in
fact). Hence B2−nδ(λx) = B2−nδ(0) + λx ⊆ λBδ(0) + λx ⊆ λBε(0) showing
that λBε(0) is open.

It now remains to show the properties of N0 listed in Proposition 2.7.
As for Property 3, we may take U to be an open ball of radius ε around
0 for some ε > 0. Define W := Bε/2(0) Then W + W ⊆ U follows from
the triangle inequality. Concerning Property 2 we simple notice that open
balls are balanced by construction. The only property that is not automatic
for a pseudo-seminorm and does require the stated condition is Property 1
(boundedness of points). The equivalence of the two is easy to see.
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Theorem 2.26. A tvs V is pseudometrizable iff it is first-countable, i.e., iff
there exists a countable base for the filter of neighborhoods of 0. Moreover,
if V is pseudometrizable it admits a compatible pseudo-seminorm.

Proof. It is clear that pseudometrizability implies the existence of a count-
able base of N0. For example, the sequence of balls {B1/n(0)}n∈N provides
such a base. Conversely, suppose that {Un}n∈N is a base of the filter of
neighborhoods of 0 such that all Un are balanced and Un+1 + Un+1 ⊆ Un.
(Given an arbitrary countable base of N0 we can always produce another
one with the desired properties.) Now for each finite subset H of N define
UH :=

∑
n∈H Un and λH :=

∑
n∈H 2−n. Note that each UH is a balanced

neighborhood of 0. Define now the function V → R+
0 : x 7→ ‖x‖ by

‖x‖ := inf
H

{λH |x ∈ UH}

if x ∈ UH for some H and ‖x‖ = 1 otherwise. We proceed to show that ‖ · ‖
defines a pseudo-seminorm and generates the topology of V .

Fix x ∈ V and λ ∈ K with |λ| ≤ 1. Since UH is balanced for each H, λx
is contained at least in the same sets UH as x. Because the definition of ‖ · ‖
uses an infimum, ‖λx‖ ≤ ‖x‖. This confirms Property 1 of Definition 2.23.

To show the triangle inequality (Property 2 of Definition 2.23) we first
note that for finite subsets H,K of N with the property λH + λK < 1
there is another unique finite subset L of N such that λL = λH + λK .
Furthermore, UH + UK ⊆ UL in this situation. Now, fix x, y ∈ V . If
‖x‖+‖y‖ ≥ 1 the triangle inequality is trivial. Otherwise, we can find ε > 0
such that ‖x‖ + ‖y‖ + 2ε < 1. We now fix finite subsets H,K of N such
that x ∈ UH , y ∈ UK while λH < ‖x‖ + ε and λK < ‖y‖ + ε. Let L be the
finite subset of N such that λL = λH + λK . Then x + y ∈ UL and hence
‖x + y‖ ≤ λL = λH + λK < ‖x‖ + ‖y‖ + 2ε. Since the resulting inequality
holds for any ε > 0 we must have ‖x+ y‖ ≤ ‖x‖ + ‖y‖ as desired.

It remains to show that the pseudo-seminorm generates the topology of
the tvs. Since the topology generated by the pseudo-seminorm as well as that
of the tvs are translation invariant, it is enough to show that the open balls
around 0 of the pseudo-seminorm form a base of the filter of neighborhoods of
0 in the topology of the tvs. Let n ∈ N. Clearly B2−n(0) ⊆ Un ⊆ B2−(n−1)(0).
But this shows that {B2−n(0)}n∈N generates the same filter as {Un}n∈N. This
completes the proof.

Exercise 4. Show that for a tvs with a balanced translation-invariant pseu-
dometric the concepts of totally boundedness of Definitions 1.79 and 2.12
coincide.
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Proposition 2.27. Let V be a mvs with pseudo-seminorm. Let r > 0 and
0 < µ ≤ 1. Then, Bµr(0) ⊆ µBr(0).

Proof. Exercise.

Proposition 2.28. Let V , W be mvs with compatible metrics and f ∈
L(V,W ). (a) f is continuous iff for all ε > 0 there exists δ > 0 such that
f(BV

δ (0)) ⊆ BW
ε (0). (b) f is bounded iff there exists δ > 0 such that for all

ε > 0 there is µ > 0 such that f(µBV
δ (0)) ⊆ BW

ε (0).

Proof. Exercise.

Proposition 2.29. Let V be a mvs and C a subspace. Then, the quotient
space V/C is a mvs.

Proof. Exercise.

2.3 Locally convex tvs

Definition 2.30. A tvs is called locally convex iff every neighborhood of 0
contains a convex neighborhood of 0.

Definition 2.31. Let V be a vector space over K. Then a map V → R+
0 :

x 7→ ‖x‖ is called a seminorm iff it satisfies the following properties:

1. ‖λx‖ = |λ|‖x‖ for all λ ∈ K, x ∈ V .

2. For all x, y ∈ V : ‖x+ y‖ ≤ ‖x‖ + ‖y‖. (triangle inequality)

A seminorm is called a norm iff it satisfies in addition the following property:

3. ‖x‖ = 0 =⇒ x = 0.

Proposition 2.32. A seminorm induces a balanced translation-invariant
pseudometric via d(x, y) := ‖x− y‖. Moreover, the open balls of this metric
are convex.

Proof. Exercise.

Proposition 2.33. Let V be a vector space and {‖ · ‖α}α∈A a set of semi-
norms on V . For any finite subset I ⊆ A and any ε > 0 define

UI,ε := {x ∈ V : ‖x‖α < ε ∀α ∈ I}.

Then, the sets UI,ε form the base of the filter of neighborhoods of 0 in a
topology on V that makes it into a locally convex tvs. If A is countable,
then V is pseudometrizable. Moreover, the topology is Hausdorff iff for any
x ∈ V \ {0} there exists α ∈ A such that ‖x‖α > 0.
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Proof. Let I, I ′ ⊆ A be finite and ε, ε′ > 0. Set I ′′ := I ∪ I ′ and ε′′ :=
min(ε, ε′). Then, UI′′,ε′′ ⊆ UI,ε ∩ UI′,ε′ . So the UI,ε really form the basis
of a filter F . We proceed to verify that F satisfies the properties required
by Proposition 2.8. Clearly, 0 ∈ U for all U ∈ F since ‖0‖α = 0 and
so 0 ∈ UI,ε for all I ⊆ A finite and ε > 0. Also λF = F since λUI,ε =
UI,|λ|ε for all I ⊆ A finite and ε > 0 by linearity of seminorms. As for
property 1 of Proposition 2.7 consider x ∈ V , I ⊆ A finite and ε > 0
arbitrary. Set µ := maxα∈I{‖x‖α}. Then, x ∈ µ+1

ε UI,ε. Property 2 of
Proposition 2.7 is satisfied since open balls of a seminorm are balanced
and the sets UI,ε are finite intersections of such open balls and hence also
balanced. Property 3 of Proposition 2.7 is sufficient to satisfy for a base.
Observe then, UI,ε/2 +UI,ε/2 ⊆ UI,ε for all I ⊆ A finite and ε > 0 due to the
triangle inequality. Thus, the so defined topology makes V into a tvs.

Observe that the sets UI,ε are convex, being finite intersections of open
balls which are convex by Proposition 2.32. Thus, V is locally convex. If
A is countable, then there is an enumeration I1, I2, . . . of the finite subsets
of A. It is easy to see that UIj ,1/n with j ∈ {1, . . . } and n ∈ N provides
then a countable basis of the filter of neighborhoods of 0. That is, V is
pseudometrizable. Concerning the Hausdorff property suppose that for any
x ∈ V \ {0} there exists α ∈ A such that ‖x‖α > 0. Then, for this x we
have x /∈ U{α},‖x‖α

. So V is Hausdorff. Conversely, suppose V is Hausdorff.
Given x ∈ V \{0} there exist thus I ⊆ A finite and ε > 0 such that x /∈ UI,ε.
In particular, there exists α ∈ I such that ‖x‖α ≥ ε > 0.

Exercise 5. In the context of Proposition 2.33 show that the topology is
the coarsest such that all seminorms ‖ · ‖α are continuous.

Definition 2.34. Let V be a tvs and W ⊆ V a neighborhood of 0. The
map ‖ · ‖W : V → R+

0 defined as

‖x‖W := inf{λ ∈ R+
0 : x ∈ λW}

is called the Minkowski functional associated to W .

Proposition 2.35. Let V be a tvs and W ⊆ V a neighborhood of 0.

1. ‖µx‖W = µ‖x‖W for all µ ∈ R+
0 and x ∈ V .

2. If W is balanced, then ‖cx‖W = |c|‖x‖W for all c ∈ K and x ∈ V .

3. If W is convex, then ‖x+ y‖W ≤ ‖x‖W + ‖y‖W for all x, y ∈ V .

4. If V is Hausdorff and W is bounded, then ‖x‖W = 0 implies x = 0.
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Proof. Exercise.

Theorem 2.36. Let V be a tvs. Then, V is locally convex iff there exists
a set of seminorms inducing its topology as in Proposition 2.33. Also, V is
locally convex and pseudometrizable iff there exists a countable such set.

Proof. Given a locally convex tvs V , let {Uα}α∈A be a base of the fil-
ter of neighborhoods such that Uα is balanced and convex for all α ∈ A.
(Exercise.How can this be achieved?) In case that V is pseudometrizable
we choose the base such that A is countable. Let ‖ · ‖α be the Minkowski
functional associated to Uα. Then, by Proposition 2.35, ‖ · ‖α is a seminorm
for each α ∈ A. We claim that the topology generated by the seminorms is
precisely the topology of V . Exercise.Complete the proof.

Exercise 6. Let V be a locally convex tvs and W a balanced and convex
neighborhood of 0. Show that the Minkowski functional associated to W is
continuous on V .

Exercise 7. Let V be a vector space and {‖·‖n}n∈N a sequence of seminorms
on V . Define the function q : V → R+

0 via

q(x) :=
∞∑

n=1
2−n ‖x‖n

‖x‖n + 1
.

(a) Show that q is a pseudo-seminorm on V . (b) Show that the topology
generated on V by q is the same as that generated by the sequence {‖·‖n}n∈N.

2.4 Normed and seminormed vector spaces

Definition 2.37. A tvs is called locally bounded iff it contains a bounded
neighborhood of 0.

Proposition 2.38. A locally bounded tvs is pseudometrizable.

Proof. Let V be a locally bounded tvs and U a bounded neighborhood of
0 in V . The sequence {Un}n∈N with Un := 1

nU is the base of a filter F on
V . Take a neighborhood W of 0. By boundedness of U there exists λ ∈ R+

such that U ⊆ λW . Choosing n ∈ N with n ≥ λ we find Un ⊆ W , i.e.,
W ∈ F . Hence F is the filter of neighborhoods of 0 and we have presented
a countable base for it. By Theorem 2.26, V is pseudometrizable.

Proposition 2.39. Let A,B be a tvs and f ∈ CL(A,B). If A or B is locally
bounded then f is bounded. Hence, CL(A,B) = BL(A,B) in this case.
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Proof. Exercise.

Definition 2.40. A tvs V is called (semi)normable iff the topology of V is
induced by a (semi)norm.

Theorem 2.41. A tvs V is seminormable iff V is locally bounded and locally
convex.

Proof. Suppose V is a seminormed vector space. Then, every ball is bounded
and also convex, so in particular, V is locally bounded and locally convex.

Conversely, suppose V is a tvs that is locally bounded and locally convex.
Take a bounded neighborhood U1 of 0 and a convex subneighborhood U2
of U1. Now take a balanced subneighborhood U3 of U2 and its convex hull
W = conv(U3). Then W is a balanced, convex and bounded (since W ⊆
U2 ⊆ U1) neighborhood of 0 in V . Thus, by Proposition 2.35 the Minkowski
functional ‖ · ‖W defines a seminorm on V . It remains to show that the
topology generated by this seminorm coincides with the topology of V . Let
U be an open set in the topology of V and x ∈ U . The ball B1(0) defined by
the seminorm is bounded since B1(0) ⊆ W and W is bounded. Hence there
exists λ ∈ R+ such that B1(0) ⊆ λ(U − x), i.e., λ−1B1(0) ⊆ U − x. But
λ−1B1(0) = Bλ−1(0) by linearity and thus Bλ−1(x) ⊆ U . Hence, U is open
in the seminorm topology as well. Conversely, consider a ball Bε(0) defined
by the seminorm for some ε > 0 and take x ∈ Bε(0). Choose δ > 0 such that
‖x‖W < ε−δ. Observe that 1

2W ⊆ B1(0) and thus by linearity δ
2W ⊆ Bδ(0).

It follows that δ
2W + x ⊆ Bε(0). But δ

2W + x is a neighborhood of x so it
follows that Bε(0) is open. This completes the proof.

Exercise 8. Let V be locally convex tvs with its topology generated by a
finite family of seminorms. Show that V is seminormable.

Proposition 2.42. Let V be a seminormed vector space and U ⊆ V a
subset. Then, U is bounded iff there exists c ∈ R+ such that ‖x‖ ≤ c for all
x ∈ U .

Proof. Exercise.

Proposition 2.43. Let A,B be seminormed vector spaces and f ∈ L(A,B).
f is bounded iff there exists c ∈ R+ such that ‖f(x)‖ ≤ c ‖x‖ for all x ∈ A.

Proof. Exercise.

Proposition 2.44. Let V be a tvs and C a vector subspace. If V is locally
convex, then so is V/C. If V is locally bounded, then so is V/C.

Proof. Exercise.
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2.5 Inner product spaces

As before K stands for a field that is either R or C.

Definition 2.45. Let V be a vector space over K and 〈·, ·〉 : V × V → K a
map. 〈·, ·〉 is called a bilinear (if K = R) or sesquilinear (if K = C) form iff
it satisfies the following properties:

• 〈u+ v, w〉 = 〈u,w〉 + 〈v, w〉 and
〈u, v + w〉 = 〈u, v〉 + 〈u,w〉 for all u, v, w ∈ V .

• 〈λu, v〉 = λ〈u, v〉 and 〈u, λv〉 = λ〈u, v〉 for all λ ∈ K and v ∈ V .

〈·, ·〉 is called symmetric (if K = R) or hermitian (if K = C) iff it satisfies in
addition the following property:

• 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .

〈·, ·〉 is called positive iff it satisfies in addition the following property:

• 〈v, v〉 ≥ 0 for all v ∈ V .

〈·, ·〉 is called definite iff it satisfies in addition the following property:

• If 〈v, v〉 = 0 then v = 0 for all v ∈ V .

A map with all these properties is also called a scalar product or an inner
product. V equipped with such a structure is called an inner product space
or a pre-Hilbert space.

Theorem 2.46 (Schwarz Inequality). Let V be a vector space over K with a
scalar product 〈·, ·〉 : V ×V → K. Then, the following inequality is satisfied:

|〈v, w〉|2 ≤ 〈v, v〉〈w,w〉 ∀v, w ∈ V.

Proof. By definiteness α := 〈v, v〉 6= 0 and we set β := −〈w, v〉. By positivity
we have,

0 ≤ 〈βv + αw, βv + αw〉.

Using bilinearity and symmetry (if K = R) or sesquilinearity and hermiticity
(if K = C) on the right hand side this yields,

0 ≤ |〈v, v〉|2〈w,w〉 − 〈v, v〉|〈v, w〉|2.

(Exercise.Show this.) Since 〈v, v〉 6= 0 we can divide by it and arrive at the
required inequality.
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Proposition 2.47. Let V be a vector space over K with a scalar product
〈·, ·〉 : V × V → K. Then, V is a normed vector space with norm given by
‖v‖ :=

√
〈v, v〉.

Proof. Exercise.Hint: To prove the triangle inequality, show that ‖v +
w‖2 ≤ (‖v‖ + ‖w‖)2 can be derived from the Schwarz inequality (Theo-
rem 2.46).

Proposition 2.48. Let V be an inner product space. Then, ∀v, w ∈ V ,

〈v, w〉 = 1
4

(
‖v + w‖2 − ‖v − w‖2

)
if K = R,

〈v, w〉 = 1
4

(
‖v + w‖2 − ‖v − w‖2 + i‖v + iw‖2 − i‖v − iw‖2

)
if K = C

Proof. Exercise.

Proposition 2.49. Let V be an inner product space. Then, its scalar prod-
uct V × V → K is continuous.

Proof. Exercise.

Theorem 2.50. Let V be a normed vector space. Then, there exists a scalar
product on V inducing the norm iff the parallelogram equality holds,

‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2 ∀v, w ∈ V.

Proof. Exercise.

Example 2.51. The spaces Rn and Cn are inner product spaces via

〈v, w〉 :=
n∑

i=1
viwi,

where vi, wi are the coefficients with respect to the standard basis.
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3 First examples and properties

3.1 Elementary topologies on function spaces

If V is a vector space over K and S is some set, then the set of maps
S → V naturally forms a vector space over K. This is probably the most
important source of topological vector spaces in functional analysis. Usually,
the spaces S and V carry additional structure (e.g. topologies) and the maps
in question may be restricted, e.g. to be continuous etc. The topology given
to this vector space of maps usually depends on these additional structures.

Example 3.1. Let S be a set and F (S,K) be the set of functions on S with
values in K. Consider the set of seminorms {px}x∈S on F (S,K) defined by
px(f) := |f(x)|. This gives F (S,K) the structure of a locally convex tvs.
The topology defined in this way is also called the topology of pointwise
convergence.

Exercise 9. Show that this topology is the coarsest topology making all
evaluation maps, i.e., maps of the type f 7→ f(x), continuous. Show also
that a sequence in F (S,K) converges with respect to this topology iff it
converges pointwise.

Example 3.2. Let S be a set and B(S,K) be the set of bounded functions
on S with values in K. Then, B(S,K) is a normed vector space with the
supremum norm:

‖f‖ := sup
x∈B(S,K)

|f(x)| ∀f ∈ B(S,K).

The topology defined in this way is also called the topology of uniform con-
vergence.

Exercise 10. Show that a sequence in B(S,K) converges with respect to
this topology iff it converges uniformly on all of S.

Exercise 11. (a) Show that on B(S,K) the topology of uniform conver-
gence is finer than the topology of pointwise convergence. (b) Under which
circumstances are both topologies equal?

Example 3.3. Let S be a topological space and K the set of compact subsets
of S. For K ∈ K define on C(S,K) the seminorm

‖f‖K := sup
x∈K

|f(x)| ∀f ∈ C(S,K).

The topology defined in this way on C(S,K) is called the topology of compact
convergence.
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Exercise 12. Show that a sequence in C(S,K) converges with respect to this
topology iff it converges compactly, i.e., uniformly in any compact subset.

Exercise 13. (a) Show that on C(S,K) the topology of compact conver-
gence is finer than the topology of pointwise convergence. (b) Show that
on the space Cb(S,K) of bounded continuous maps the topology of uniform
convergence is finer than the topology of compact convergence. (c) Give a
sufficient condition for them to be equal.

Definition 3.4. Let S be a set, V a tvs. Let S a non-empty set of non-
empty subsets of S with the property that for X, Y in S there exists Z ∈ S
such that X ∪ Y ⊆ Z. Let B be a base of the filter of neighborhoods of 0 in
V . Then, for X ∈ S and U ∈ B the sets

M(X,U) := {f ∈ F (S, V ) : f(X) ⊆ U}

define a base of the filter of neighborhoods of 0 for a translation invariant
topology on F (S, V ). This is called the S-topology on F (S, V ).

Proposition 3.5. Let S be a set, V a tvs and S ⊆ P(S) as in Definition 3.4.
Let A ⊆ F (S, V ) be a vector subspace. Then, A is a tvs with the the S-
topology iff f(X) is bounded for all f ∈ A and X ∈ S.

Proof. Exercise.

Exercise 14. (a) Let S be a set and S be the set of finite subsets of S. Show
that the S-topology on F (S,K) is the topology of pointwise convergence.
(b) Let S be a topological space and K the set of compact subsets of S. Show
that the K-topology on C(S,K) is the topology of compact convergence. (c)
Let S be a set and S a set of subsets of S such that S ∈ S. Show that the
S-topology on B(S,K) is the topology of uniform convergence.

3.2 Completeness

In the absence of a pseudometric we can use the vector space structure of
a tvs to complement the information contained in the topology in order to
define a Cauchy property which in turn will be used to define an associated
notion of completeness.

Definition 3.6. A sequence {xn}n∈N in a tvs V is called a Cauchy sequence
iff for every neighborhood U of 0 in V there is a number N > 0 such that
xn − xm ∈ U for all n,m ≥ N .
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Proposition 3.7. Let V be a mvs with translation-invariant pseudometric.
Then, the Cauchy property for sequences in tvs coincide with the previuosly
defined one in pseudometric spaces. That is, Definition 3.6 coincides then
with Definition 1.74.

Proof. Straightforward.

This Proposition implies that there is no conflict with our previous def-
inition of a Cauchy sequence in pseudometric spaces if we restrict ourselves
to translation-invariant pseudometrics. Moreover, it implies that for this
purpose it does not matter which pseudometric we use, as long as it is
translation-invariant. This latter condition is indeed essential.

Exercise 15. Give an example of an mvs with two compatible metrics d1,
d2 and a sequence x, such that x is Cauchy with respect to d1, but not with
respect to d2.

In the following, whenever we talk about a Cauchy sequence in a tvs
(possibly with additional) structure, we mean a Cauchy sequence according
to Definition 3.6.

For a topologically sensible notion of completeness, we need something
more general than Cauchy sequences: Cauchy filters.

Definition 3.8. A filter F on a subset A of a tvs V is called a Cauchy filter
iff for every neighborhood U of 0 in V there is an element W ∈ F such that
W −W ⊆ U .

Proposition 3.9. A sequence is Cauchy iff the associated filter is Cauchy.

Proof. Exercise.

Proposition 3.10. Let V be a tvs, F a Cauchy filter on a subset A of V .
If p ∈ V is accumulation point of F , then F converges to p.

Proof. Let U be a neighborhood of 0 in V . Then, there exists a neighborhood
W of 0 in U such that W +W ⊆ U . Since F is a Cauchy filter there exists
F ∈ F such that F − F ⊆ W . On the other hand, p is accumulation point
of F so there exists q ∈ F ∩ (p + W ). Then, we have F − q ⊆ W and thus
F ⊆ q +W ⊆ p+W +W ⊆ p+ U . This shows that every neighborhood of
p is contained in F , i.e., F converges to p.

Proposition 3.11. A converging filter is Cauchy.

Proof. Exercise.
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Definition 3.12. A subset U of a tvs is called complete iff every Cauchy
filter on U converges to a point in U . It is called sequentially complete iff
every Cauchy sequence in U converges to a point in U .

Since completeness is an important and convenient concept in functional
analisis, the complete versions of Hausdorff tvs have special names. In par-
ticular, a complete metrizable locally convex tvs is called a Fréchet space,
a complete normable tvs is called a Banach space, and a complete inner
product space is called a Hilbert space.

Obviously, completeness implies sequential completeness, but not neces-
sarily the other way round. Note that for an mvs with translation-invariant
pseudometric, completeness in the sense of metric spaces (Definition 1.77)
is now called sequential completeness. However, we will see that in this
context it is equivalent to completeness in the sense of the above definition.

Proposition 3.13. Let V be a mvs. Then, V is complete (in the sense of
tvs) iff it is sequentially complete.

Proof. We have to show that sequential completeness implies completeness.
(The opposite direction is obvious.) We use a translation-invariant pseudo-
metric on V . Suppose F is a Cauchy filter on V . That is, for any ε > 0
there exists U ∈ F such that U − U ⊆ Bε(0). Now, for each n ∈ N choose
consecutively Un ∈ F such that Un −Un ⊆ B1/n(0) and Un ⊆ Un−1 if n > 1
(possibly by using the intersection property). Thus, for every N ∈ N we
have that for all n,m ≥ N : Un − Um ⊆ B1/N (0). Now for each n ∈ N
choose an element xn ∈ Un. These form a Cauchy sequence and by sequen-
tial completeness converge to a point x ∈ V . Given n observe that for all
y ∈ Un : d(y, x) ≤ d(y, xn) + d(xn, x) < 1

n + 1
n , hence Un ⊆ B2/n(x) and

thus B2/n(x) ∈ F . Since this is true for all n ∈ N, F contains arbitrarily
small neighborhoods of x and hence all of them, i.e., converges to x.

Proposition 3.14. (a) Let V be a Hausdorff tvs and A be a complete subset.
Then A is closed. (b) Let V be a tvs and A be a closed subset of a complete
subset B. Then A is complete.

Proof. Exercise.

We proceed to show the analogue of Proposition 1.80.

Lemma 3.15. Let V be a tvs, C ⊆ V totally bounded and F an ultrafilter
on C. Then F is Cauchy.
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Proof. Let U be a neighborhood of 0 in V . Choose another neighborhood W
of 0 such that W is balanced and W +W ⊆ U . Since C is totally bounded
there is a finite subset F = {x1, . . . , xn} of V such that C ⊆ F + W . This
implies in turn that there is k ∈ {1, . . . , } such that (xk + W ) ∩ X 6= ∅ for
all X ∈ F . To see that this is true suppose the contrary. Then for each
i ∈ {1, . . . , n} there is Xi ∈ F such that (xi + W ) ∩ Xi = ∅. But, then
∅ =

⋂n
i=1Xi ∈ F , a contradiction. Thus, since F is ultrafilter we must have

xk + W ∈ F by Lemma 1.23. But (xk + W ) − (xk + W ) = W − W =
W +W ⊆ U by construction. So F is a Cauchy filter.

Proposition 3.16. Let V be a tvs and C ⊆ V a compact subset. Then, C
is complete and totally bounded.

Proof. Exercise.

Proposition 3.17. Let V be a tvs and C ⊆ V a subset. If C is totally
bounded and complete then it is compact.

Proof. Let F be a filter on C. By Proposition 1.24 there exists an ultrafilter
F ′ in C such that F ⊆ F ′. Since C is totally bounded, Lemma 3.15 implies
that F ′ is Cauchy. Since C is complete, F ′ must converge to some point
p ∈ C. By Proposition 1.58, this means that p is accumulation point of F ′.
By Proposition 1.59 this implies that p is accumulation point of F . Since F
was arbitrary, Proposition 1.64 implies that C is compact.

Proposition 3.18. Let V be a complete mvs and C a vector subspace. Then
V/C is complete.

Proof. Exercise.

Exercise 16. Which of the topologies defined above are complete? Which
become complete under additional assumptions on the space S?

3.3 Finite dimensional tvs

Theorem 3.19. Let V be a Hausdorff tvs of dimension n ∈ N. Then, any
isomorphism of vector spaces from Kn to V is also an isomorphism of tvs.
Moreover, any linear map from V to any tvs is continuous.

Proof. We first show that any linear map from Kn to any tvs W is contin-
uous. Define the map g : Kn ×Wn → W given by

g((λ1, . . . , λn), (v1, . . . , vn)) := λ1v1 + · · · + λnvn.
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This map can be obtained by taking products and compositions of vector
addition and scalar multiplication, which are continuous. Hence it is con-
tinuous. On the other hand, any linear map f : Kn → W takes the form
f(λ1, . . . , λn) = g((λ1, . . . , λn), (v1, . . . , vn)) for some fixed set of vectors
{v1, . . . , vn} in W and is thus continuous by Proposition 1.18.

We proceed to show that any linear map V → Kn is continuous. We
do this by induction in n starting with n = 1. For n = 1 any such non-
zero map takes the form g : λe1 → λ for some e1 ∈ V \ {0}. (If g = 0
continuity is trivial.) For r > 0 consider the element re1 ∈ V . Since V
is Hausdorff there exists an open neighborhood U of 0 in V that does not
contain re1. Moreover, we can choose U to be balanced. But then it is clear
that U ⊆ g−1(Br(0)). That is, g−1(Br(0)) is a neighborhood of 0 in V .
Since open balls centered at 0 form a base of neighborhoods of 0 in K this
implies that the preimage of any neighborhood of 0 in K is a neighborhood
of 0 in V . By Proposition 2.16.a this implies that g is continuous.

We now assume that we have proofed the statement in dimension n− 1.
Let V be a Hausdorff tvs of dimension n. Consider now some non-zero
linear map h : V → K. We factorize h as h = h̃ ◦ p into the projection
p : V → V/ kerh and the linear map h̃ : V/ kerh → K. kerh is a vector
subspace of V of dimension n − 1. In particular, it is a Hausdorff tvs and
hence by assumption of the induction isomorphic as a tvs to Kn−1. Thus, it
is complete and by Proposition 3.14.a closed as a subspace of V . Therefore
by Proposition 2.19 the quotient tvs V/kerh is Hausdorff. Since V/kerh is
also one-dimensional it is isomorphic as a tvs to K as we have shown above.
Thus, h̃ is continuous. Since the projection p is continuous by definition, the
composition h = h̃ ◦ p must be continuous. Hence, any linear map V → K
is continuous. But a linear map V → Kn can be written as a composition of
the continuous map V → V n given by v 7→ (v, . . . , v) with the product of n
linear (and hence continuous) maps V → K. Thus, it must be continuous.

We have thus shown that for any n a Hausdorff tvs V of dimension n is
isomorphic to Kn as a tvs via any vector space isomorphism. Thus, by the
first part of the proof any linear map V → W , where W is an arbitrary tvs
must be continuous.

Proposition 3.20. Let X be a Hausdorff tvs. Then, any finite dimensional
subspace of X is complete and closed.

Proof. Let A ⊆ X be a subspace of dimension n. By Theorem 3.19, A as a
tvs is isomorphic to Kn. In particular, A is complete and thus closed in X
by Proposition 3.14.
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Proposition 3.21. Let X be a Hausdorff tvs, C a closed subspace of X and
F a finite-dimensional subspace of X. Then, F + C is closed in X.

Proof. Since C is closed X/C is a Hausdorff tvs. Let p : X → X/C be the
continuous projection. Then, p(F ) is finite-dimensional, hence complete and
closed in X/C by Proposition 3.20. Thus, F +C = p−1(p(F )) is closed.

Proposition 3.22. Let C be a bounded subset of Kn with the standard
topology. Then C is totally bounded.

Proof. Exercise.

Theorem 3.23 (Riesz). Let V be a Hausdorff tvs. Then, V is locally com-
pact iff it is finite dimensional.

Proof. If V is a finite dimensional Hausdorff tvs, then its is isomorphic to
Kn for some n by Theorem 3.19. But closed balls around 0 are compact
neighborhoods of 0 in Kn, i.e., Kn is locally compact.

Now assume that V is a locally compact Hausdorff tvs. Let K be a
compact and balanced neighborhood of 0. We can always find this since
given a compact neighborhood by Proposition 2.10 we can find a balanced
and closed subneighborhood which by Proposition 1.39 must then also be
compact. Now let U be an open subneighborhood of 1

2K. By compactness of
K, there exists a finite set of points {x1, . . . , xn} such that K ⊆

⋃n
i=1(xi+U).

Let W be the finite dimensional subspace of V spanned by {x1, . . . , xn}. By
Theorem 3.19 W is isomorphic to Km for some m ∈ N and hence complete
and closed in V by Proposition 3.14. So by Proposition 2.19 the quotient
space V/W is a Hausdorff tvs. Let π : V → V/W be the projection. Observe
that, K ⊆ W + U ⊆ W + 1

2K. Thus, π(K) ⊆ π(1
2K), or equivalently

π(2K) ⊆ π(K). Iterating, we find π(2kK) ⊆ π(K) for all k ∈ N and hence
π(V ) = π(K) since V =

⋃∞
k=1 2kK as K is balanced. Since π is continuous

π(K) = π(V ) = V/W is compact. But since V/W is Hausdorff any one
dimensional subspace of it is isomorphic to K by Theorem 3.19 and hence
complete and closed and would have to be compact. But K is not compact, so
V/W cannot have any one-dimensional subspace, i.e., must have dimension
zero. Thus, W = V and V is finite dimensional.

Exercise 17. (a) Show that a finite dimensional tvs is always locally com-
pact, even if it is not Hausdorff. (b) Give an example of an infinite dimen-
sional tvs that is locally compact.
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3.4 Equicontinuity

Definition 3.24. Let S be a topological space, T a tvs and F ⊆ C(S, T ).
Then, F is called equicontinuous at a ∈ S iff for all neighborhoods W of 0
in T there exists a neighborhood U of a in S such that f(U) ⊆ f(a) + W
for all f ∈ F . Moreover, F is called equicontinuous iff F is equicontinuous
for all a ∈ S.

Exercise 18. Let S be a topological space and F ⊆ C(S,K). (a) Show that
F is bounded in C(S,K) with the topology of pointwise convergence iff for
each x ∈ S there exists c > 0 such that |f(x)| < c for all f ∈ F . (b) Show
that F is bounded in C(S,K) with the topology of compact convergence iff
for each K ⊆ S compact there exists c > 0 such that |f(x)| < c for all x ∈ K
and for all f ∈ F .

Lemma 3.25. Let S be a topological space and F ⊆ C(S,K) equicontinuous.
Then, F is bounded with respect to the topology of pointwise convergence iff
it is bounded with respect to the topology of compact convergence.

Proof. Exercise.

Lemma 3.26. Let S be a topological space and F ⊆ C(S,K) equicontinuous.
Then, the closures of F in the topology of pointwise convergence and in the
topology of compact convergence are equicontinuous.

Proof. Exercise.

Proposition 3.27. Let S be a topological space and F ⊆ C(S,K) equicon-
tinuous. If F is closed then it is complete, both in the topology of pointwise
convergence and in the topology of compact convergence.

Proof. We first consider the topology of pointwise convergence. Let F be a
Cauchy filter in F . For each x ∈ S induce a filter Fx generated by ex(F)
on K through the evaluation map ex : C(S,K) → K given by ex(f) := f(x).
Then each Fx is a Cauchy filter on K and thus convergent to a uniquely
defined g(x) ∈ K. This defines a function g : S → K. We proceed to show
that g is continuous. Fix a ∈ S and ε > 0. By equicontinuity, there exists
a neighborhood U of a such that f(U) ⊆ Bε(f(a)) for all f ∈ F and hence
|f(x) − f(y)| < 2ε for all x, y ∈ U and f ∈ F . Fix x, y ∈ U . Then, there
exists f ∈ F such that |f(x) − g(x)| < ε and |f(y) − g(y)| < ε. Hence

|g(x) − g(y)| ≤ |g(x) − f(x)| + |f(x) − f(y)| + |f(y) − g(y)| < 4ε,
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showing that g is continuous. Thus, F converges to g and g ∈ F if F is
closed.

We proceed to consider the topology of compact convergence. Let F be
a Cauchy filter in F (now with respect to compact convergence). Then, F is
also a Cauchy filter with respect to pointwise convergence and the previous
part of the proof shows that there exists a function g ∈ C(S,K) to which
F converges pointwise. But since F is Cauchy with respect to compact
convergence it must convergence to g also compactly. Then, if F is closed
we have g ∈ F and F is complete.

Theorem 3.28 (generalized Arzela-Ascoli). Let S be a topological space.
Let F ⊆ C(S,K) be equicontinuous and bounded in the topology of pointwise
convergence. Then, F is relatively compact in C(S,K) with the topology of
compact convergence.

Proof. We consider the topology of compact convergence on C(S,K). By
Lemma 3.25, F is bounded in this topology. The closure F of F is bounded
by Proposition 2.11.c, equicontinuous by Lemma 3.26 and complete by
Proposition 3.27. Due to Proposition 3.17 it suffices to show that F is
totally bounded. Let U be a neighborhood of 0 in V . Then, there exists
K ⊆ S compact and ε > 0 such that UK,3ε ⊆ U , where

UK,δ := {f ∈ V : |f(x)| < δ ∀x ∈ K}.

By equicontinuity we can choose for each a ∈ K a neighborhood W of
a such that |f(x) − f(a)| < ε for all x ∈ W and all f ∈ F . By com-
pactness of K there is a finite set of points {a1, . . . , an} such that the
associated neighborhoods {W1, . . . ,Wn} cover S. Now consider the con-
tinuous linear map p : C(S,K) → Kn given by p(f) := (f(a1), . . . , f(an)).
Since F is bounded, p(F ) is bounded in Kn (due to Proposition 2.16.b) and
hence totally bounded (Proposition 3.22). Thus, there exists a finite subset
{f1, . . . , fm} ⊆ F such that p(F ) is covered by balls of radius ε centered
at the points p(f1), . . . , p(fm). In particular, for any f ∈ F there is then
k ∈ {1, . . . ,m} such that |f(ai) − fk(ai)| < ε for all i ∈ {1, . . . , n}. Speci-
fying also x ∈ K there is i ∈ {1, . . . , n} such that x ∈ Wi. We obtain the
estimate

|f(x) − fk(x)| ≤ |f(x) − f(ai)| + |f(ai) − fk(ai)| + |fk(ai) − fk(x)| < 3ε.

Since x ∈ K was arbitrary this implies f ∈ fk +UK,3ε ⊆ fk +U . We conclude
that F is covered by the set {f1, . . . , fm} + U . Since U was an arbitrary
neighborhood of 0 this means that F is totally bounded.
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Proposition 3.29. Let S be a locally compact space. Let F ⊆ C(S,K) be
totally bounded in the topology of compact convergence. Then, F is equicon-
tinuous.

Proof. Exercise.

3.5 The Hahn-Banach Theorem

Theorem 3.30 (Hahn-Banach). Let V be a vector space over K, p be a
seminorm on V , A ⊆ V a vector subspace. Let f : A → K be a linear
map such that |f(x)| ≤ p(x) for all x ∈ A. Then, there exists a linear map
f̃ : V → K, extending f (i.e., f̃(x) = f(x) for all x ∈ A) and such that
|f(x)| ≤ p(x) for all x ∈ V .

Proof. We first consider the case K = R. Suppose that A is a proper sub-
space of V . Let v ∈ V \A and define B to be the subspace of V spanned by
A and v. In a first step we show that there exists a linear map f̃ : B → R
such that f̃(x) = f(x) for all x ∈ A and |f(y)| ≤ p(y) for all y ∈ B. Since
any vector y ∈ B can be uniquely written as y = x+λv for some x ∈ A and
some λ ∈ R, we have f̃(y) = f(x) + λf̃(v), i.e, f̃ is completely determined
by its value on v. For all x, x′ ∈ A we have

f(x) + f(x′) = f(x+ x′) ≤ p(x+ x′) ≤ p(x− v) + p(x′ + v)

and thus,
f(x) − p(x− v) ≤ p(x′ + v) − f(x′).

In particular, defining a to be the supremum for x ∈ A on the left and b to
be the infimum for y ∈ A on the right we get

a = sup
x∈A

{f(x) − p(x− v)} ≤ inf
x′∈A

{p(x′ + v) − f(x′)} = b.

Now choose c ∈ [a, b] arbitrary. We claim that by setting f̃(v) := c, f̃ is
bounded by p as required. For x ∈ A and λ > 0 we get

f̃(x+ λv) = λ
(
f̃
(
λ−1x

)
+ c
)

≤ λ p
(
λ−1x+ v

)
= p (x+ λv)

f̃(x− λv) = λ
(
f̃
(
λ−1x

)
− c
)

≤ λ p
(
λ−1x− v

)
= p (x− λv) .

Thus, we get f̃(x) ≤ p(x) for all x ∈ B. Replacing x by −x and using
that p(−x) = p(x) we obtain also −f̃(x) ≤ p(x) and thus |f̃(x)| ≤ p(x) as
required.



Robert Oeckl – FA NOTES – 05/12/2011 43

We proceed to the second step of the proof, showing that the desired
linear form f̃ exists on V . We will make use of Zorn’s Lemma. Consider
the set of pairs (W, f̃) of vector subspaces A ⊆ W ⊆ V with linear forms
f̃ : W → R that extend f and are bounded by p. These pairs are partially
ordered by extension, i.e., (W, f̃) ≤ (W ′, f̃ ′) iff W ⊆ W ′ and f̃ ′|W = f̃ .
Moreover, for any totally ordered subset of pairs {(Wi, f̃i)}i∈I there is an
upper bound given by (WI , f̃I) where WI :=

⋃
i∈I Wi and f̃I(x) := f̃i(x) for

x ∈ Wi. Thus, by Zorn’s Lemma there exists a maximal pair (W, f̃). Since
the first part of the proof has shown that for any proper vector subspace
of V we can construct an extension, i.e., a pair that is strictly greater with
respect to the ordering, we must have W = V . This concludes the proof in
the case K = R.

We turn to the case K = C. Let fr(x) := <f(x) for all x ∈ A be the
real part of the linear form f : A → C. Since the complex vector spaces A
and V are also real vector spaces and p reduces to a real seminorm, we can
apply the real version of the proof to fr to get a real linear map f̃r : V → R
extending fr and being bounded by p. We claim that f̃ : V → C given by

f̃(x) := f̃r(x) − if̃r(ix) ∀x ∈ V

is then a solution to the complex problem. We first verify that f̃ is complex
linear. Let x ∈ V and λ ∈ C. Then, λ = a+ ib with a, b ∈ R and

f̃(λx) = af̃(x) + bf̃(ix)
= af̃r(x) − aif̃r(ix) + bf̃r(ix) + bif̃r(x)

= (a+ ib)
(
f̃r(x) − if̃r(ix)

)
= λf̃(x).

We proceed to verify that f̃(x) = f(x) for all x ∈ A. For all x ∈ A,

f̃(x) = <f(x) − i<f(ix) = <f(x) − i<(if(x)) = <f(x) + i=(f(x)) = f(x).

It remains to show that f̃ is bounded by p. Let x ∈ V . Choose λ ∈ C with
|λ| = 1 such that λf̃(x) ∈ R. Then,∣∣∣f̃(x)

∣∣∣ =
∣∣∣λf̃(x)

∣∣∣ =
∣∣∣f̃(λx)

∣∣∣ =
∣∣∣f̃r(λx)

∣∣∣ ≤ p(λx) = p(x).

This completes the proof.

Corollary 3.31. Let V be a seminormed vector space, c > 0, A ⊆ V a
vector subspace and f : A → K a linear form satisfying |f(x)| ≤ c‖x‖ for all
x ∈ A. Then, there exists a linear form f̃ : V → K that coincides with f on
A and satisfies |f̃(x)| ≤ c‖x‖ for all x ∈ V .
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Proof. Immediate.

Theorem 3.32. Let V be a locally convex tvs, A ⊆ V a vector subspace and
f : A → K a continuous linear form. Then, there exists a continuous linear
form f̃ : V → K that coincides with f on A.

Proof. Since f is continuous on A, the set U := {x ∈ A : |f(x)| ≤ 1} is a
neighborhood of 0 in A. Since A carries the subset topology, there exists
a neighborhood Ũ of 0 in V such that Ũ ∩ A ⊆ U . By local convexity,
there exists a convex and balanced subneighborhood W ⊆ Ũ of 0 in V . The
associated Minkowski functional ‖ · ‖W is a seminorm on V according to
Proposition 2.35 and we have |f(x)| ≤ ‖x‖W for all x ∈ A. Thus, we may
apply the Hahn-Banach Theorem 3.30 to obtain a linear form f̃ : V → K
that coincides with f on the subspace A and is bounded by ‖ · ‖W . Since
‖ · ‖W is continuous this implies that f̃ is continuous.

Corollary 3.33. Let V be a locally convex Hausdorff tvs. Then, CL(V,K)
separates points in V . That is, for any pair x, y ∈ V such that x 6= y, there
exists f ∈ CL(V,K) such that f(x) 6= f(y).

Proof. Exercise.

Proposition 3.34. Let X be a locally convex Hausdorff tvs. Then, any
finite dimensional subspace of X admits a closed complement.

Proof. We proceed by induction in dimension. Let A ⊆ X be a subspace of
dimension 1 and v ∈ A \ {0}. Define the linear map λ : A → K by λ(v) = 1.
Then, the Hahn-Banach Theorem in the form of Theorem 3.32 ensures that
λ extends to a continuous map λ̃ : X → K. Then, clearly ker λ̃ is a closed
complement of A in X. Now suppose we have shown that for any subspace
of dimension n a closed complement exists in X. Let N be a subspace of
X of dimension n + 1. Choose an n-dimensional subspace M ⊂ N . This
has a closed complement C by assumption. Moreover, C is a locally convex
Hausdorff tvs in its own right. Let A = N∩C. Then, A is a one-dimensional
subspace of C and we can apply the initial part of the proof to conclude that
it has a closed complement D in C. But D is closed also in X since C is
closed in X and it is a complement of N .

3.6 More examples of function spaces

Definition 3.35. Let T be a locally compact space. A continuous function
f : T → K is said to vanish at infinity iff for any ε > 0 the subset {x ∈
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T : |f(x)| ≥ ε} is compact in T . The set of such functions is denoted by
C0(T,K).

Exercise 19. Let T be a locally compact space. Show that C0(T,K) is
complete in the topology of uniform convergence, but not in general complete
in the topology of compact convergence.

Definition 3.36. Let U be a non-empty open subset of Rn. For a multi-
index l ∈ Nn

0 we denote the corresponding partial derivative of a function
f : Rn → K by

Dlf := ∂l1 . . . ∂ln

∂xl1
1 . . . ∂x

ln
n

f.

Let k ∈ N0. If all partial derivatives with |l| := l1 + · · · + ln ≤ k for a
function f exist and are continuous, we say that f is k times continuously
differentiable. We denote the vector space of k times continuously differ-
entiable functions on U with values in K by Ck(U,K). We say a function
f : U → K is infinitely differentiable or smooth if it is k times continuously
differentiable for any k ∈ N0. The corresponding vector space is denoted by
C∞(U,K).

Definition 3.37. Let U be a non-empty open and bounded subset of Rn and
k ∈ N0. We denote by Ck(U,K) the set of continuous functions f : U → K
that are k times continuously differentiable on U , and such that any partial
derivative Dlf with |l| ≤ k extends continuously to U . Similarly, we denote
by C∞(U,K) the set of continuous functions f : U → K, smooth in U and
such that any partial derivative extends continuously to U .

Example 3.38. Let U be a non-empty open and bounded subset of Rn.
Let l ∈ Nn

0 and define the seminorm pl : Ck(U,K) → R+
0 via

pl(f) := sup
x∈U

∣∣∣(Dlf
)

(x)
∣∣∣

for k ∈ N0 with k ≥ |l| or for k = ∞. For any k ∈ N0 the set of seminorms
{pl : l ∈ Nn

0 , |l| ≤ k} makes Ck(U,K) into a normable vector space. Similarly,
the set of seminorms {pl : l ∈ Nn

0 } makes C∞(U,K) into a locally convex
mvs.

Exercise 20. Let U be a non-empty open and bounded subset of Rn.
Show that C∞(U,K) with the topology defined above is complete, but not
normable.
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Proposition 3.39. Let T be a σ-compact space. Then, C(T,K) with the
topology of compact convergence is metrizable.

Proof. Exercise.

Example 3.40. Let U be a non-empty open subset of Rn and k ∈ N0∪{∞}.
Let W be an open and bounded subset of Rn such that W ⊆ U and let l ∈ Nn

0
such that |l| ≤ k. Define the seminorm pW ,l : Ck(U,K) → R+

0 via

pW ,l(f) := sup
x∈W

∣∣∣(Dlf
)

(x)
∣∣∣ .

The set of these seminorms makes Ck(U,K) into a locally convex tvs.

Exercise 21. Let U ⊆ Rn be non-empty and open and let k ∈ N0 ∪ {∞}.
Show that Ck(U,K) is complete and metrizable, but not normable.

Exercise 22. Let 0 ≤ k < m ≤ ∞. (a) Let U ⊂ Rn be non-empty, open and
bounded. Show that the inclusion map Cm(U,K) → Ck(U,K) is injective
and continuous, but does not in general have closed image. (b) Let U ⊆ Rn

be non-empty and open. Show that the inclusion map Cm(U,K) → Ck(U,K)
is injective and continuous, but is in general neither bounded nor has closed
image.

Exercise 23. Let U ⊂ Rn be non-empty, open and bounded, let k ∈ N0 ∪
{∞}. Show that the inclusion map Ck(U,K) → Ck(U,K) is injective and
continuous. Show also that its image is in general not closed.

Exercise 24. Let k ∈ N0 ∪ {∞}. For f ∈ C1(R,K) consider the operator
D(f) := f ′. (a) Show that D : Ck+1([0, 1],K) → Ck([0, 1],K) is continuous.
(b) Show that D : Ck+1(R,K) → Ck(R,K) is continuous.

Exercise 25. Let k ∈ N0 ∪ {∞}. For f ∈ C(R,K) consider the operator

(I(f))(y) :=
∫ y

0
f(x) dx.

(a) Show that I : Ck([0, 1],K) → Ck+1([0, 1],K) is continuous. (b) Show
that I : Ck(R,K) → Ck+1(R,K) is continuous.

Definition 3.41. Let D be a non-empty, open and connected subset of C.
We denote by O(D) the vector space of holomorphic functions on D. If D
is also bounded we denote by O(D) the vector space of complex continuous
functions on D that are holomorphic in D.
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Exercise 26. (a) Show that O(D) is complete with the topology of uniform
convergence. (b) Show that O(D) is complete with the topology of compact
convergence.

Theorem 3.42 (Montel). Let D ⊆ C be non-empty, open and connected
and F ⊆ O(D). Then, the following are equivalent:

1. F is relatively compact.

2. F is totally bounded.

3. F is bounded.

Proof. 1.⇒2. F is compact and hence totally bounded by Proposition 1.80.
Since F is a subset of F it must also be totally bounded. 2.⇒3. This follows
from Proposition 2.14. 3.⇒1. Since D is locally compact, it is easy to see
that boundedness is equivalent to the following property: For each point
z ∈ D there exists a neighborhood U ⊆ D and a constant M > 0 such that
|f(x)| ≤ M for all x ∈ U and all f ∈ F . It can then be shown that F is
equicontinuous [Notes on Complex Analysis, Theorem 5.28]. The Arzela-
Ascoli Theorem 3.28 then ensures that F is relatively compact.

Definition 3.43. Let X be a measurable space, µ a measure on X and
p > 0. Define

Lp(X,µ,K) := {f : X → K measurable : |f |p integrable}.

Also define

L∞(X,µ,K) := {f : X → K measurable : |f | bounded almost everywhere}.

We recall the following facts from real analysis.

Example 3.44. The set Lp(X,µ,K) for p ∈ (0,∞] is a vector space.

1. ‖ · ‖∞ : L∞(X,µ,K) → R+
0 given by

‖f‖∞ := inf{‖g‖sup : g = f a.e. and g : X → K bounded measurable}

defines a seminorm on L∞(X,µ,K), making it into a complete semi-
normed space.
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2. If 1 ≤ p < ∞, then ‖ · ‖p : Lp(X,µ,K) → R+
0 given by

‖f‖p :=
(∫

X
|f |p

)1/p

defines a seminorm on Lp(X,µ,K), making it into a complete semi-
normed space.

3. If p ≤ 1, then sp : Lp(X,µ,K) → R+
0 given by

sp(f) :=
∫

X
|f |p

defines a pseudo-seminorm on Lp(X,µ,K), making it into a complete
pseudometrizable space.

Example 3.45. For any p ∈ (0,∞], the closure N := {0} of zero in
Lp(X,µ,K) is the set of measurable functions that vanish almost every-
where. The quotient space Lp(X,µ,K) := Lp(X,µ,K)/N is a complete
mvs. It carries a norm (i.e., is a Banach space) for p ≥ 1 and a pseudo-norm
otherwise. In the case p = 2 the norm comes from an inner product making
the space into a Hilbert space.

3.7 The Banach-Steinhaus Theorem

Definition 3.46. Let S be a topological space. A subset C ⊆ S is called
nowhere dense iff its closure C does not contain any non-empty open set. A
subset C ⊆ S is called meager iff it is the countable union of nowhere dense
subsets.

Proposition 3.47. Let X and Y be tvs and A ⊆ CL(X,Y ). Then A is
equicontinuous iff for any neighborhood U of 0 in Y there exists a neighbor-
hood V of 0 in X such that

f(V ) ⊆ W ∀f ∈ A.

Proof. Immediate.

Theorem 3.48 (Banach-Steinhaus). Let X and Y be tvs and A ⊆ CL(X,Y ).
For x ∈ X define A(x) := {f(x) : f ∈ A} ⊆ Y . Define B ⊆ X as

B := {x ∈ X : A(x) is bounded}.

If B is not meager in X, then B = X and A is equicontinuous.
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Proof. We suppose that B is not meager. Let U be an arbitrary neighbor-
hood of 0 in Y . Choose a closed and balanced subneighborhood W of 0.
Set

E :=
⋂

f∈A

f−1(W )

and note that E is closed and balanced, being an intersection of closed and
balanced sets. If x ∈ B, then A(x) is bounded, there exists n ∈ N such that
A(x) ⊆ nW and hence x ∈ nE. Therefore,

B ⊆
∞⋃

n=1
nE.

If all sets nE were meager, their countable union would be meager and also
the subset B. Since by assumption B is not meager, there must be at least
one n ∈ N such that nE is not meager. But since the topology of X is scale

invariant, this implies that E itself is not meager. Thus, the interior
◦
E =

◦
E

is not empty. Also,
◦
E is balanced since E is balanced and thus must contain

0. In particular,
◦
E, being open, is therefore a neighborhood of 0 and so is

E itself. Thus,
f(E) ⊆ W ⊆ U ∀f ∈ A.

This means that A is equicontinuous at 0 and hence equicontinuous by
linearity (Proposition 3.47). Let now x ∈ X arbitrary. Since x is bounded,
there exists λ > 0 such that x ∈ λE. But then, f(x) ∈ f(λE) ⊆ λU for all
f ∈ A. That is, A(x) ⊆ λU , i.e., A(x) is bounded and x ∈ B. Since x was
arbitrary, B = X.

Proposition 3.49. Let S be a complete metric space and C ⊆ S a meager
subset. Then, C does not contain any non-empty open set. In particular,
C 6= S.

Proof. Since C is meager, there exists a sequence {Cn}n∈N of nowhere dense
subsets of S such that C =

⋃
n∈NCn. Define Un := S \ Cn for all n ∈ N.

Then, each Un is open and dense in S. Thus, by Baire’s Theorem 1.84
the intersection

⋂
n∈N Un is dense in S. Thus, its complement

⋃
n∈NCn

cannot contain any non-empty open set. The same is true for the subset
C ⊆

⋃
n∈NCn.

Corollary 3.50. Let X be a complete Hausdorff mvs, Y be a tvs and A ⊆
CL(X,Y ). Suppose that A(x) := {f(x) : f ∈ A} ⊆ Y is bounded for all
x ∈ X. Then, A is equicontinuous.
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Proof. Exercise.

Corollary 3.51. Let X be a Banach space, Y a normed vector space and
A ⊆ CL(X,Y ). Suppose that

sup
f∈A

‖f(x)‖ < ∞ ∀x ∈ X.

Then, there exists M > 0 such that

‖f(x)‖ < M‖x‖ ∀x ∈ X, ∀f ∈ A.

Proof. Exercise.

3.8 The Open Mapping Theorem

Theorem 3.52 (Open Mapping Theorem). Let X be a complete Hausdorff
mvs, Y a Hausdorff tvs, f ∈ CL(X,Y ) and f(X) not meager in Y . Then,
Y is a complete Hausdorff mvs and f is open and surjective.

Proof. Suppose U is a neighborhood of 0 in X. Let V ⊆ U be a balanced
subneighborhood of 0. Since every point of X is bounded we have

X =
⋃

n∈N
nV and hence f(X) =

⋃
n∈N

nf(V ).

But f(X) is not meager, so nf(V ) is not meager for at least one n ∈ N.
But then scale invariance of the topology of Y implies that f(V ) itself is

not meager. Thus,
◦

f(V ) is not empty, is open and balanced (since V is
balanced) and thus forms a neighborhood of 0 in Y . Consequently, f(V ) is
also a neighborhood of 0 in Y and so is f(U).

Consider now a compatible pseudonorm on X. Let U be a neighbor-
hood of 0 in X. There exists then r > 0 such that Br(0) ⊆ U . Let
y1 ∈ f(Br/2(0)). We proceed to construct sequences {yn}n∈N and {xn}n∈N

by induction. Supposed we are given yn ∈ f(Br/2n(0)). By the first part of
the proof f(Br/2n+1(0)) is a neighborhood of 0 in Y . Thus,

f(Br/2n(0)) ∩
(
yn + f(Br/2n+1(0))

)
6= ∅.

In particular, we can choose xn ∈ Br/2n(0) such that

f(xn) ∈ yn + f(Br/2n+1(0)).
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Now set yn+1 := yn − f(xn). Then, yn+1 ∈ f(Br/2n+1(0)) as the latter is
balanced.

Since in the pseudonorm ‖xn‖ < r/2n for all n ∈ N, the partial sums
{
∑m

n=1 xn}m∈N form a Cauchy sequence. (Use the triangle inequality). Since
X is complete, they converge to some x ∈ X with ‖x‖ < r, i.e., x ∈ Br(0).
On the other hand

f

(
m∑

n=1
xn

)
=

m∑
n=1

f(xn) =
m∑

n=1
(yn − yn+1) = y1 − ym+1.

Since f is continuous the limit m → ∞ exists and yields

f(x) = y1 − y where y := lim
m→∞

ym.

Note that our notation for the limit y implies uniqueness which indeed fol-
lows from the fact that Y is Hausdorff.

We proceed to show that y = 0. Suppose the contrary. Again using that
Y is Hausdorff there exists a closed neighborhood C of 0 in Y that does not
contain y. Its preimage f−1(C) is a neighborhood of 0 in X by continuity
and must contain a ball Br/2n(0) for some n ∈ N . But then f(Br/2n(0)) ⊆ C

and f(Br/2n(0)) ⊆ C since C is closed. But yk ∈ f(Br/2n(0)) ⊆ C for all
k ≥ n. So no yk for k ≥ n is contained in the open neighborhood Y \ C of
y, contradicting convergence of the sequence to y. We have thus established
f(x) = y1. But since x ∈ Br(0) and y1 ∈ f(Br/2(0)) was arbitrary we may
conclude that f(Br/2(0)) ⊆ f(Br(0)) ⊆ f(U). By the first part of the proof
f(Br/2(0)) is a neighborhood of 0 in Y . So we may conclude that f(U) is
also a neighborhood of 0 in Y . This establishes that f is open at 0 and
hence open everywhere by linearity.

Since f is open the image f(X) must be open in Y . On the other hand
f(X) is a vector subspace of Y . But the only open vector subspace of a tvs
is the space itself. Hence, f(X) = Y , i.e., f is surjective.

Let now C := ker f . Since f is surjective, Y is naturally isomorphic to
the quotient space X/C as a vector space. Since f is continuous and open Y
is also homeomorphic to X/C by Proposition 2.19.3 and hence isomorphic
as a tvs. But then Propositions 2.29 and 3.18 imply that Y is metrizable
and complete.

Corollary 3.53. Let X, Y be complete Hausdorff mvs and f ∈ CL(X,Y )
surjective. Then, f is open.

Proof. Exercise.
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4 Algebras, Operators and Dual Spaces

4.1 The Stone-Weierstraß Theorem

Definition 4.1. A vector space A over the field K is called an algebra over
K iff it is equipped with an associative bilinear map · : A × A → A. This
map is called multiplication.

Definition 4.2. Let A be an algebra over K. A is called a commutative
algebra iff a · b = b · a for all a, b ∈ A. An element e ∈ A is called a unit iff
e · a = a · e = a for all a ∈ A and e 6= 0. Iff A is equipped with a unit it
is called a unital algebra. Assume now A to be unital and consider a ∈ A.
Then, b ∈ A is called an inverse of a iff b · a = a · b = e. An element a ∈ A
possessing an inverse is called invertible.

It is immediately verified that a unit and an inverse are unique.

Definition 4.3. Let A be an algebra over K equipped with a topology. Then
A is called a topological algebra iff vector addition, scalar multiplication and
algebra multiplication are continuous.

Proposition 4.4. Let S be a topological space. Then, C(S,K) with the
topology of compact convergence is a unital topological algebra.

Proof. Exercise.

Lemma 4.5. Let c > 0. The absolute value function | · | : R → R given
by x 7→ |x| can be approximated uniformly on [−c, c] by polynomials with
vanishing constant term.

Proof. Exercise.

Lemma 4.6. Let c > 0 and ε > 0. Then, there exist polynomials Pmin and
Pmax of n variables and without constant term such that for all a1, . . . , an ∈
[−c, c],

|Pmin(a1, . . . , an) − min{a1, . . . , an}| < ε,

|Pmax(a1, . . . , an) − max{a1, . . . , an}| < ε.

Furthermore, Pmin(a, . . . , a) = a and Pmax(a, . . . , a) = a.
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Proof. It suffices to show the statement for n = 2. Since the minimum
and maximum functions can be evaluated iteratively, the general statement
follows then by iteration and a multi-ε argument. We notice that

max{a1, a2} = a1 + a2
2

+ |a1 − a2|
2

min{a1, a2} = a1 + a2
2

− |a1 − a2|
2

.

By Lemma 4.5 there exists a polynomial P without constant terms such
that |P (x) − |x|| < 2ε for all x ∈ [−2c, 2c]. It is easily verified that

Pmax(a1, a2) := a1 + a2
2

+ P (a1 − a2)
2

,

Pmin(a1, a2) := a1 + a2
2

− P (a1 − a2)
2

have the desired properties.

Definition 4.7. Let S be a set and A ⊆ F (S,K). We say that A separates
points iff for each pair x, y ∈ S such that x 6= y there exists f ∈ A such that
f(x) 6= f(y). We say that A vanishes nowhere iff for each x ∈ S there exists
f ∈ A such that f(x) 6= 0.

Lemma 4.8. Let S be a topological space and A ⊆ C(S,K) a subalgebra.
Suppose that A separates points and vanishes nowhere. Then, for any pair
x, y ∈ S with x 6= y and any pair a, b ∈ K there exists a function f ∈ A such
that f(x) = a and f(y) = b.

Proof. Exercise.

Theorem 4.9 (real Stone-Weierstraß). Let K be a compact Hausdorff space
and A ⊆ C(K,R) a subalgebra. Suppose that A separates points and vanishes
nowhere. Then, A is dense in C(K,R) with respect to the topology of uniform
convergence.

Proof. Given f ∈ C(K,R), and ε > 0 we have to show that there is k ∈ A
such that k ∈ Bε(f), i.e.,

f(x) − ε < k(x) < f(x) + ε ∀x ∈ K.

Fix x ∈ K. For each y ∈ K we choose a function gx,y ∈ A such that
f(x) = gx,y(x) and f(y) = gx,y(y). This is possible by Lemma 4.8. By
continuity there exists an open neighborhood Uy for each y ∈ K such that
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gx,y(z) < f(z) + ε/4 for all z ∈ Uy. Since K is compact there are finitely
many points y1, . . . , yn ∈ K such that the associated open neighborhoods
Uy1 , . . . , Uyn cover K. Let

gx := min{gx,y1 , . . . , gx,yn}.

Since K is compact there exists c > 0 such that |gx,yi(z)| ≤ c for all z ∈ K
and all i ∈ {1, . . . , n}. Then, by Lemma 4.6 there exists a polynomial Pmin
such that hx := Pmin(gx,y1 , . . . , gx,yn) ∈ A satisfies |hx(z) − gx(z)| < ε/4 for
all z ∈ K and hx(x) = gx(x). Thus, hx(x) = f(x) and hx(z) < f(z) + ε/2
for all z ∈ K.

Choose now for each x ∈ K a function hx ∈ A as above. Then, by
continuity, for each x ∈ K there exists an open neighborhood Ux such that
f(z) − ε/2 < hx(z) for all z ∈ Ux. By compactness of K there exists a
finite set of points x1, . . . , xm ∈ K such that the associated neighborhoods
Ux1 , . . . , Uxm cover K. Let

h := max{hx1 , . . . , hxm}.

Since K is compact there exists c > 0 such that |hxi(z)| ≤ c for all z ∈ K
and all i ∈ {1, . . . ,m}. By Lemma 4.6 there exists a polynomial Pmax such
that k := Pmax(hx1 , . . . , hxm) ∈ A satisfies |k(z) − h(z)| < ε/2 for all z ∈ K.
Then, f(z)−ε < k(z) < f(z)+ε for all z ∈ K. This completes the proof.

Theorem 4.10 (complex Stone-Weierstraß). Let K be a compact Hausdorff
space and A ⊆ C(K,C) a subalgebra. Suppose that A separates points,
vanishes nowhere and is invariant under complex conjugation. Then, A is
dense in C(K,C) with respect to the topology of uniform convergence.

Proof. Let AR be the real subalgebra of A given by the functions with values
in R. Note that if f ∈ A, then <f ∈ AR since <f = (f + f)/2. Likewise
if f ∈ A, then =f ∈ AR since =f = −<(if). It is then clear that AR
separates points and vanishes nowhere. Applying the real version of the
Stone-Weierstraß Theorem 4.9 we find that AR is dense in C(K,R). But
then A = AR + iAR is dense in C(K,C) = C(K,R) + i C(K,R).

Theorem 4.11. Let S be a Hausdorff space and A ⊆ C(S,K) a subalgebra.
Suppose that A separates points, vanishes nowhere and is invariant under
complex conjugation if K = C. Then, A is dense in C(S,K) with respect to
the topology of compact convergence.
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Proof. Recall that the sets of the form

UK,ε := {f ∈ C(S,K) : |f(x)| < ε ∀x ∈ K},

where K ⊆ S is compact and ε > 0 form a basis of neighborhoods of 0 in
C(S,K). Given f ∈ C(S,K), K ⊆ S compact and ε > 0 we have to show that
there is g ∈ A such that g ∈ f +UK,ε. Let AK be the image of A under the
projection p : C(S,K) → C(K,K). Then, AK is an algebra that separates
points, vanishes nowhere and is invariant under complex conjugation if K =
C. By the ordinary Stone-Weierstraß Theorem 4.9 or 4.10, AK is dense
in C(K,K) with respect to the topology of uniform convergence. Hence,
there exists g ∈ A such that p(g) ∈ Bε(p(f)). But this is equivalent to
g ∈ f + UK,ε.

Theorem 4.12. Let S be a locally compact Hausdorff space and A ⊆
C0(S,K) a subalgebra. Suppose that A separates points, vanishes nowhere
and is invariant under complex conjugation if K = C. Then, A is dense in
C0(S,K) with respect to the topology of uniform convergence.

Proof. Exercise.Hint: Let S̃ = S ∪ {∞} be the one-point compactification
of S (compare Exercise 2). Show that C0(S,K) can be identified with the
closed subalgebra C|∞=0(S̃,K) ⊆ C(S̃,K) of those continuous functions on
S̃ that vanish at ∞. Denote by Ã the corresponding extension of A to S̃.
Now modify Theorem 4.9 in such a way that Ã is assumed to vanish nowhere
except at ∞ to show that Ã is dense in C|∞=0(S̃,K).

4.2 Operators

Proposition 4.13. Let X, Y , Z be tvs. Let f ∈ CL(X,Y ) and g ∈
CL(Y, Z). If f or g is bounded, then g ◦ f is bounded. If f or g is compact,
then g ◦ f is compact.

Proof. Exercise.

Definition 4.14. Let X,Y be normed vector spaces. Then, the operator
norm on CL(X,Y ) is given by

‖f‖ := sup
{

‖f(x)‖ : x ∈ B1(0) ⊆ X
}
.

Proposition 4.15. Let X be a normed vector space and Y a Banach space.
Then, CL(X,Y ) with the operator norm is a Banach space.
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Proof. Let {fn}n∈N be a Cauchy sequence in CL(X,Y ). This means,

∀ε > 0 : ∃N > 0 : ∀n,m ≥ N : ‖fn − fm‖ ≤ ε.

But by the definition of the operator norm this is equivalent to

∀ε > 0 : ∃N > 0 : ∀n,m ≥ N : ∀x ∈ X : ‖fn(x) − fm(x)‖ ≤ ε‖x‖. (1)

Since Y is complete, so each of the Cauchy sequences {fn(x)}n∈N converges
to a vector f(x) ∈ Y . This defines a map f : X → Y . f is linear since we
have for all x, y ∈ X and λ, µ ∈ K,

f(λx+ µy) = lim
n→∞

fn(λx+ µy) = lim
n→∞

(λfn(x) + µfn(y))

= λ lim
n→∞

fn(x) + µ lim
n→∞

fn(y) = λf(x) + µf(y).

Equation (1) implies now

∀ε > 0 : ∃N > 0 : ∀n ≥ N : ∀x ∈ X : ‖fn(x) − f(x)‖ ≤ ε‖x‖.

This implies that f is continuous and is equivalent to

∀ε > 0 : ∃N > 0 : ∀n ≥ N : ‖fn − f‖ ≤ ε.

That is, {fn}n∈N converges to f .

Exercise 27. Let X, Y be tvs. Let S be the set of bounded subsets of X.
(a) Show that CL(X,Y ) is a tvs with the S-topology. (b) Suppose further
that X is locally bounded and Y is complete and Hausdorff. Show that then
CL(X,Y ) is complete. (c) Show that if X and Y are normed vector spaces
the S-topology coincides with the operator norm topology.

Example 4.16. Let X be a tvs. Then, CL(X,X) is an algebra over K
and Proposition 4.13 implies that the subsets BL(X,X) and KL(X,X) of
CL(X,X) are bi-ideals.

Exercise 28. Let X be a normed vector space. Show that CL(X,X) with
the operator norm and multiplication given by composition is a topological
algebra. Moreover, show that ‖A ◦B‖ ≤ ‖A‖‖B‖ for all A,B ∈ CL(X,X).
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4.3 Dual spaces

Definition 4.17. Let X be a tvs over K. Then, the space L(X,K) of linear
maps X → K is called the algebraic dual of X and denoted by X×. The
space CL(X,K) of continuous linear maps X → K is called the (topological)
dual of X and denoted by X∗.

Definition 4.18. Let X be a tvs. Then, the weak∗ topology on X∗ is the
coarsest topology on X∗ such that the evaluation maps x̂ : X∗ → K given
by x̂(f) := f(x) are continuous for all x ∈ X.

Exercise 29. Let X be a tvs. Show that the weak∗ topology on X∗ makes it
into a locally convex tvs and indeed coincides with the topology of pointwise
convergence under the inclusion CL(X,K) ⊆ C(X,K). Moreover, show that
CL(X,K) is closed in C(X,K).

Proposition 4.19. Let X be a tvs, F ⊆ CL(X,K) equicontinuous. Then,
F is bounded in the weak∗ topology.

Proof. Exercise.

Proposition 4.20. Let X be a normed vector space. Then, the operator
norm topology on X∗ is finer than the weak∗ topology.

Proof. Exercise.

Indeed, we shall see that the following Banach-Alaoglu Theorem has as
a striking consequence a considerable strengthening of the above statement.

Theorem 4.21 (Banach-Alaoglu). Let X be a tvs, U a neighborhood of 0
in X and V a bounded and closed set in K. Then, the set

M(U, V ) := {f ∈ X∗ : f(U) ⊆ V }.

is compact with respect to the weak∗ topology.

Proof. We first show that M(U, V ) is closed. To this end observe that

M(U, V ) =
⋂

x∈U

M({x}, V ) where M({x}, V ) := {f ∈ X∗ : f(x) ∈ V }.

Each set M({x}, V ) is closed since it is the preimage of the closed set V
under the continuous evaluation map x̂ : X∗ → K. Thus, M(U, V ), being
an intersection of closed sets is closed.
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Next we show that M(U, V ) is equicontinuous and bounded. Let W be
a neighborhood of 0 in K. Since V is bounded there exists λ > 0 such that
V ⊆ λW , i.e., λ−1V ⊆ W . But by linearity M(U, V ) = M(λ−1U, λ−1V ).
This means that f(λ−1U) ⊆ λ−1V ⊆ W for all f ∈ M(U, V ), showing
equicontinuity. By Proposition 4.19 it is also bounded.

Thus, the assumptions of the Arzela-Ascoli Theorem 3.28 are satisfied
and we obtain that M(U, V ) is relatively compact with respect to the topol-
ogy of compact convergence. But since M(U, V ) is closed in the topology of
pointwise convergence it is also closed in the topology of compact conver-
gence which is finer. Hence, M(U, V ) is compact in the topology of compact
convergence. But since the topology of pointwise convergence is coarser,
M(U, V ) must also be compact in this topology.

Corollary 4.22. Let X be a normed vector space and B ⊆ X∗ the closed
unit ball with respect to the operator norm. Then B is compact in the weak∗

topology.
Proof. Exercise.

Remark 4.23. Let X be a normed space. Then, X∗ with the operator
norm topology is complete, i.e., a Banach space (due to Proposition 4.15).

Given a normed vector space X, we shall in the following always equip
X∗ with the operator norm if not mentioned otherwise.
Definition 4.24. Let X be a normed vector space. The bidual space of X,
denoted by X∗∗ is the dual space of the dual space X∗. Let x ∈ X.
Proposition 4.25. Let X be a normed vector space. Given x ∈ X the
evaluation map x̂ : X∗ → K given by x̂(y) := y(x) for all y ∈ X∗ is an
element of X∗∗. Moreover, the canonical linear map iX : X → X∗∗ given by
x 7→ x̂ is isometric.
Proof. The continuity of x̂ follows from Proposition 4.20. Thus, it is an
element of X∗∗. We proceed to show that iX is isometric. Denote by BX∗

the closed unit ball in X∗. Then, for all x ∈ X,

‖x̂‖ = sup
f∈BX∗

|x̂(f)| = sup
f∈BX∗

|f(x)| ≤ sup
f∈BX∗

‖f‖‖x‖ = ‖x‖.

On the other hand, given x ∈ X choose with the help of the Hahn-Banach
Theorem (Corollary 3.31) g ∈ X∗ such that g(x) = ‖x‖ and ‖g‖ = 1. Then,

‖x̂‖ = sup
f∈BX∗

|x̂(f)| ≥ |x̂(g)| = |g(x)| = ‖x‖.
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Definition 4.26. A Banach space X is called reflexive iff the canonical
linear map iX : X → X∗∗ is surjective.

4.4 Adjoint operators

Definition 4.27. Let X, Y be tvs and f ∈ CL(X,Y ). The adjoint operator
f∗ ∈ L(Y ∗, X∗) is defined by

(f∗(g))(x) := g(f(x)) ∀x ∈ X, g ∈ Y ∗.

Remark 4.28. It is immediately verified that the image of f∗ is indeed
contained in X∗ and not merely in X×.

Proposition 4.29. Let X, Y be tvs and f ∈ CL(X,Y ). Then, f∗ ∈
CL(Y ∗, X∗) if we equip X∗ and Y ∗ with the weak∗ topology.

Proof. Exercise.

Proposition 4.30. Let X, Y be normed vector spaces and f ∈ CL(X,Y ).
Then, f∗ ∈ CL(Y ∗, X∗) if we equip X∗ and Y ∗ with the operator norm topol-
ogy. Moreover, equipping also CL(X,Y ) and CL(Y ∗, X∗) with the operator
norm we get ‖f∗‖ = ‖f‖ for all f ∈ CL(X,Y ). That is, ∗ : CL(X,Y ) →
CL(Y ∗, X∗) is a linear isometry.

Proof. Exercise.Hint: Use the Hahn-Banach Theorem in the form of Corol-
lary 3.31 to show that ‖f∗‖ ≥ ‖f‖.

Lemma 4.31. Let X, Y be normed vector spaces and f ∈ CL(X,Y ). Then,
f∗∗ ◦ iX = iY ◦ f .

Proof. Exercise.

Proposition 4.32. Let X, Y be normed vector spaces and f ∈ CL(X,Y ).
Equip X∗ and Y ∗ with the operator norm topology. Then, compactness of f
implies compactness of f∗. Supposing in addition that Y is complete, also
compactness of f∗ implies compactness of f .

Proof. Suppose first that f is compact. Then, C := f(B1(0)) is compact.
Let BY ∗ be the open unit ball in Y ∗. Then, BY ∗ is equicontinuous and
the restriction of BY ∗ to C ⊆ Y is bounded in C(C,K) (with the topology
of pointwise convergence). Thus, by the Arzela-Ascoli Theorem 3.28, BY ∗

restricted to C is totally bounded in C(C,K) (with the topology of uniform
convergence). In particular, for any ε > 0 there exists a finite set F ⊆ BY ∗
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such that for any g ∈ BY ∗ there is g̃ ∈ F with |g(y)− g̃(y)| < ε for all y ∈ C.
But then also |f∗(g)(x) − f∗(g̃)(x)| < ε for all x ∈ B1(0) ⊆ X. This in turn
implies ‖f∗(g) − f∗(g̃)‖ ≤ ε. That is, f∗(BY ∗) is totally bounded and hence
relatively compact. Hence, f∗ is compact.

Conversely, suppose that f∗ is compact. Then, by the same argument
as above f∗∗ : X∗∗ → Y ∗∗ is compact. That is, there is a neighborhood U∗∗

of 0 in X∗∗ such that f∗∗(U∗∗) is compact in Y ∗∗. Since iX is continuous
U := i−1

X (U∗∗) is a neighborhood of 0 in X. Using Lemma 4.31 we get
f∗∗(U∗∗) ⊇ f∗∗ ◦ iX(U) = iY ◦f(U). In particular, this means that iY ◦f(U)
is totally bounded. Since iY is isometric, f(U) is also totally bounded. So,
F (U) is totally bounded and also complete given completeness of Y , hence
compact. Thus, f is compact.

Proposition 4.33. Let X, Y be Hausdorff tvs, A ∈ CL(X,Y ). Then, there
are canonical isomorphisms of vector spaces,

1.
(
Y/A(X)

)∗
→ ker(A∗),

2. Y ∗/ ker(A∗) →
(
A(X)

)∗
.

Moreover, supposing in addition that Y is locally convex, if we equip dual
space with the weak∗ topology, these isomorphisms become isomorphisms of
tvs. Similarly, If X and Y are normed vector spaces and we equip dual
spaces with the operator norm, the isomorphisms become isometries.

Proof. Let q : Y → Y/A(X) be the quotient map. The adjoint of q is
q∗ :

(
Y/A(X)

)∗
→ Y ∗. Since q is surjective, q∗ is injective. We claim

that the image of q∗ is ker(A∗) ⊆ Y ∗ proving 1. Let f ∈
(
Y/A(X)

)∗
.

Then, A∗(q∗(f)) = f ◦ q ◦ A = 0 since already q ◦ A = 0. Now suppose
f ∈ ker(A∗) ⊆ Y ∗. Then, f ◦ A = 0, i.e., f |A(X) = 0. Since f is continuous,
we must actually have f |

A(X) = 0. But this means there is a well defined
g : Y/A(X) → K such that f = g ◦ q. Moreover, the continuity of f implies
continuity of g by the definition of the quotient topology on Y/A(X). This
completes the proof of 1.

Consider the inclusion i : A(X) → Y . The adjoint of i is i∗ : Y ∗ →(
A(X)

)∗
. Since i is injective, i∗ is surjective. We claim that the kernel of i∗

is precisely ker(A∗) so that quotienting it leads the isomorphism 2. Indeed,
let f ∈ Y ∗. f ∈ ker(A∗) iff 0 = A∗(f) = f ◦ A. But this is equivalent to
f |A(X) = 0. Since f is continuous this is in turn equivalent to f |

A(X) = 0.
But this is in turn equivalent to 0 = f ◦ i = i∗(f), completing the proof of 2.
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Exercise.Complete the topological part of the proof.

4.5 Approximating Compact Operators

Definition 4.34. Let X,Y be tvs. We denote the space of continuous linear
maps X → Y with finite dimensional image by CLfin(X,Y ).

Proposition 4.35. Let X,Y be tvs such that Y is Hausdorff. Then, CLfin(X,Y ) ⊆
KL(X,Y ).

Proof. Exercise.

Proposition 4.36. Let X be a normed vector space, Y a Banach space.
Then, CLfin(X,Y ) ⊆ KL(X,Y ) with respect to the operator norm topology.

Proof. Let f ∈ CLfin(X,Y ) and ε > 0. Then, there exists g ∈ CLfin(X,Y )
such that ‖f − g‖ < ε. In particular, (f − g)(B1(0)) ⊆ Bε(0). This implies
f(B1(0)) ⊆ g(B1(0))+Bε(0). But g(B1(0)) is a bounded subset of the finite
dimensional subspace g(X) and hence totally bounded. Thus, there exists
a finite subset F ⊆ g(B1(0)) such that g(B1(0)) ⊆ F + Bε(0). But then,
f(B1(0)) ⊆ F + Bε(0) + Bε(0) ⊆ F + B2ε(0). That is, f(B1(0)) is covered
by a finite number of balls of radius 2ε. Since ε was arbitrary this means
that f(B1(0)) is totally bounded and hence relatively compact.

Proposition 4.37. Let X,Y be normed vector spaces. Suppose there ex-
ists a bounded sequence {sn}n∈N of operators sn ∈ CLfin(Y, Y ) such that
limn→∞ sn(y) = y for all y ∈ Y . Then, KL(X,Y ) ⊆ CLfin(X,Y ) with
respect to the operator norm topology.

Proof. Exercise.Hint: For f ∈ KL(X,Y ) and ε > 0 show that there exists
n ∈ N such that ‖sn ◦ f − f‖ < ε.

4.6 Fredholm Operators

Proposition 4.38. Let X be a Hausdorff tvs and T ∈ KL(X,X). Then,
the kernel of S := 1 − T ∈ CL(X,X) is finite-dimensional.

Proof. Note that T acts as the identity on the subspace kerS. Denote this
induced operator by T̃ : kerS → kerS. Since T is compact so is T̃ . Thus,
there exists a neighborhood of 0 in kerS that is compact. In particular,
kerS is locally compact. By Theorem 3.23, kerS is finite dimensional.
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Proposition 4.39. Let X, Y be Banach spaces and f ∈ CL(X,Y ) injective.
Then, f(X) is closed iff there exists c > 0 such that ‖f(x)‖ ≥ c‖x‖ for all
x ∈ X.

Proof. Suppose first that f(X) is closed. Then, f(X) is complete since Y
is complete. Thus, by Corollary 3.53, f is open as a map X → f(X). In
particular, f(B1(0)) is an open neighborhood of 0 in f(X). Thus, there
exists c > 0 such that Bc(0) ⊆ f(B1(0)) ⊆ f(X). By injectivity of f this
implies that ‖f(x)‖ ≥ c for all x ∈ X with ‖x‖ ≥ 1. This implies in turn
‖f(x)‖ ≥ c‖x‖ for all x ∈ X.

Conversely, assume that there is c > 0 such that ‖f(x)‖ ≥ c‖x‖ for
all x ∈ X. Let y ∈ f(X). Then there exists a sequence {xn}n∈N in X
such that {f(xn)}n∈N converges to y. In particular, {f(xn)}n∈N is a Cauchy
sequence. But as is easy to see the assumption then implies that {xn}n∈N is
also a Cauchy sequence. Since X is complete this sequence converges, say
to x ∈ X. But since f is continuous we must have

y = lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
= f(x).

In particular, y ∈ f(X), i.e., f(X) is closed.

Proposition 4.40. Let X be a Banach space and T ∈ KL(X,X). Then,
the image of S := 1 − T ∈ CL(X,X) is closed and has finite codimension,
i.e., X/S(X) is finite dimensional.

Proof. We first show that S(X) is a closed subspace of X. Since S is contin-
uous kerS is a closed subspace of X. The quotient map q : X → X/ ker(S)
is thus a continuous and open linear map between Banach spaces. S factor-
izes through q via S = S̃ ◦ q, where S̃ : X/ ker(S) → X is linear, continuous
and injective. We equip X/ ker(S) with the quotient norm. By Propo-
sitions 2.44 and 3.18 this space is a Banach space. By Proposition 4.39
the image of S̃ (and thus that of S) is closed iff there exists a constant
c > 0 such that ‖S̃(y)‖ ≥ c‖y‖ for all y ∈ S/ ker(S). Hence, we have to
demonstrate the existence of such a constant. Suppose it does not exist.
Then, there is a sequence {yn}n∈N of elements of X/ ker(S) with ‖yn‖ = 1
and such that limn→∞ S̃(yn) = 0. Now choose a preimages xn of the yn in
X with 1 ≤ ‖xn‖ < 2. Then, {xn}n∈N is bounded so that {T (xn)}n∈N is
compact. In particular, there is a subsequence {xk}k∈N so that {T (xk)}k∈N
converges, say to z ∈ X. Since on the other hand limk→∞ S(xk) = 0 we
find with S + T = 1 that limk→∞ xk = z. So by continuity of S we get
S(z) = 0, i.e., z ∈ ker(S) and hence z ∈ ker q. By continuity of q this im-
plies, limk→∞ ‖q(xk)‖ = 0, contradicting ‖q(xk)‖ = ‖yk‖ = 1 for all k ∈ N.



64 Robert Oeckl – FA NOTES – 05/12/2011

This completes the proof of the existence of c and hence of the closedness
of the image of S.

The compactness of T implies the compactness of T ∗ by Proposition 4.32.
Thus, by Proposition 4.38, S∗ = 1∗ − T ∗ has finite dimensional kernel. But
Proposition 4.33.1 implies then that the codimension of S(X) in X, i.e.,
the dimension of X/S(X) is also finite. Since we have seen above that
S(X) = S(X), this completes the proof.

Definition 4.41. Let X, Y be normed vector spaces and A ∈ CL(X,Y ).
A is called a Fredholm operator iff the kernel of A is finite dimensional and
its image is closed and of finite codimension. Then, we define the index of
a A to be

indA = dim(kerA) − dim(Y/A(Y )).

We denote by FL(X,Y ) the set of Fredholm operators.

Lemma 4.42 (Riesz). Let X be a normed vector space and C a closed
subspace. Then, for any 1 > ε > 0 there exists x ∈ X \C with ‖x‖ = 1 such
that for all y ∈ C,

‖x− y‖ ≥ 1 − ε.

Proof. Choose x0 ∈ X \ C arbitrary. Now choose y0 ∈ C such that

‖x0 − y0‖ ≤ ‖x0 − y‖ 1
1 − ε

for all y ∈ C. We claim that

x := x0 − y0
‖x0 − y0‖

has the desired property. Indeed, for all y ∈ C,

‖x− y‖ = ‖x0 − y0 − (‖x0 − y0‖)y‖
‖x0 − y0‖

≥ ‖x0 − y0‖(1 − ε)
‖x0 − y0‖

.

Proposition 4.43. Let X,Y be Banach space. Then, the subset CLinv(X,Y )
of continuously invertible maps is open in CL(X,Y ).

Proof. Let f : X → Y be linear and continuous and with continuous inverse
f−1. By Proposition 4.39 there is a constant c > 0 such that ‖f(x)‖ ≥ c‖x‖
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for all x ∈ X. Now consider g ∈ CL(X,Y ) such that ‖f − g‖ < c/2. We
claim that g has a continuous inverse. First, observe

‖g(x)‖ ≥ ‖f(x)‖ − ‖f(x) − g(x)‖ ≥ c‖x‖ − c

2
‖x‖ = c

2
‖x‖ ∀x ∈ X. (2)

This implies that g is injective and moreover has closed image by Proposi-
tion 4.39. Suppose now that g(x) 6= Y . By Lemma 4.42 there exists then
y0 ∈ Y \ g(X) with ‖y0‖ = 1 such that ‖y0 − y‖ ≥ 1/2 for all y ∈ g(X). Let
x0 := f−1(y0). Then,

1
2

= 1
2

‖f(x0)‖ ≥ c

2
‖x0‖ > ‖f(x0) − g(x0)‖ ≥ 1

2
,

a contradiction. Thus, g(X) = Y and g is invertible. But g−1 is continuous
since (2) now implies ‖g−1(y)‖ ≤ (2/c)‖y‖ for all y ∈ Y .

Proposition 4.44. Let X, Y be Banach spaces. Then, FL(X,Y ) is open
in CL(X,Y ). Moreover, ind : FL(X,Y ) → Z is continuous.

Proof. Let S : X → Y be Fredholm. Since kerS is finite dimensional, there
exists a closed complement C ⊆ X by Proposition 3.34. Then, S|C : C → Y
is injective and has closed image S(C) = S(X). Also, let D ⊆ Y be a
complement of S(X). Since S is Fredholm, D is finite-dimensional and thus
also closed. Note that C⊕D is a Banach space. It will be convenient to equip
it with the norm ‖x + y‖ := ‖x‖ + ‖y‖ for x ∈ C, y ∈ D. Define the map
S̃ : C⊕D → Y by S̃(x, y) := S(x) +y. S̃ is the product of two continuously
invertible maps and hence continuously invertible. By Proposition 4.43 there
is thus r > 0 such that Br(S̃) ⊆ CLinv(C ⊕ D,Y ). Let T ∈ CL(X,Y ) such
that ‖T − S‖ < r. Define T̃ : C ⊕D → Y as T̃ (x, y) := T (x) + y. Then,

‖T̃ − S̃‖ = sup
‖x+y‖≤1

‖T (x) − S(x)‖ = sup
‖x‖≤1

‖T (x) − S(x)‖ ≤ ‖T − S‖,

where x ∈ C and y ∈ D. In particular, ‖T̃ − S̃‖ < r, so T̃ has a continuous
inverse.

Note that kerT ∩ C = {0}, so there is a subspace N ⊆ X such that
X = C ⊕ N ⊕ kerT . In particular, kerT is finite-dimensional. Since T̃
is homeomorphism, T (C) = T̃ (C) is closed and thus complete. On the
other hand T (N) being finite-dimensional is also complete. Thus T (X) =
T (N) ⊕ T (C) is also complete and thus closed in Y . Also, T (C) +D = Y ,
so in particular T (C) has finite codimension and so does T (X). Thus, T is
Fredholm.

Exercise.Complete the proof by showing indT = indS.
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Corollary 4.45. Let X be a Banach space and T ∈ KL(X,X). Then,
S := 1 − T ∈ FL(X,X). Moreover, indS = 0.

Proof. Exercise.Hint: For the second assertion consider the family of op-
erators St := 1 − tT for t ∈ [0, 1] and use the continuity of ind.

Proposition 4.46 (Fredholm alternative). Let X be a Banach spaces, T ∈
KL(X,X) and λ ∈ K \ {0}. Then, either the equation

λx− Tx = y

has one unique solution x ∈ X for each y ∈ X, or it has no solution for
some y ∈ X and infinitely many solutions for all other y ∈ X.

Proof. Exercise.

4.7 Eigenvalues and Eigenvectors

Definition 4.47. Let X be a tvs and A ∈ CL(X,X). Then, λ ∈ K is called
an eigenvalue of A iff there exists x ∈ X \ {0} such that λx−Ax = 0. Then
x is called an eigenvector for the eigenvalue λ. Moreover, the vector space
of eigenvectors for the eigenvalue λ is called the eigenspace of λ.

Proposition 4.48. Let X be a Banach space and T ∈ KL(X,X). Then,
λ ∈ K \ {0} is an eigenvalue of T iff λ1 − T does not have a continuous
inverse.

Proof. Exercise.

Lemma 4.49. Let X be a Banach space, T ∈ KL(X,X) and c > 0. Then,
the set of eigenvalues λ such that |λ| > c is finite.

Proof. Suppose the assertion is not true. Thus, there exists a sequence
{λn}n∈N of distinct eigenvalues of T such that |λn| > c for all n ∈ N. Let
{vn}n∈N be a sequence of associated eigenvectors. Observe that the set of
these eigenvectors is linearly independent. For all n ∈ N let An be the
vector space spanned by {v1, . . . , vn}. Thus {An}n∈N is a strictly ascending
sequence of finite-dimensional subspaces of X. Set y1 := v1/‖v1‖. Using
Lemma 4.42 we choose for each n ∈ N a vector yn+1 ∈ An+1 such that
‖yn+1‖ = 1 and ‖yn+1 −y‖ > 1/2 for all y ∈ An. Now let n > m ≥ 1. Then,

‖Tyn − Tym‖ = ‖λnyn − (λnyn − Tyn + Tym)‖

= |λn|‖yn − |λn|−1(λnyn − Tyn + Tym)‖ > |λn|1
2
>

1
2
c.
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We have used here that λnyn − Tyn ∈ An−1 and that Tym ∈ Am ⊆ An−1.
This shows that the image of the bounded set {yn}n∈N under T is not totally
bounded. But this contradicts the compactness of T .

Definition 4.50. Let X be a Banach space and A ∈ CL(X,X). Then, the
set σ(A) := {λ ∈ K : λ1 − A is not continuously invertible} is called the
spectrum of A.

Theorem 4.51. Let X be a Banach space and T ∈ KL(X,X).

1. If X is infinite-dimensional, then 0 ∈ σ(T ).

2. The set σ(T ) is bounded.

3. The set σ(T ) is countable.

4. σ(T ) has at most one accumulation point, 0.

Proof. Exercise.
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5 Banach Algebras

5.1 Invertibility and the Spectrum

Suppose X is a Banach space. Then we are often interested in (continuous)
operators on this space, i.e, elements of the space CL(X,X). We have
already seen that this is again a Banach space. However, operators can
also be composed with each other, which gives us more structure, namely
that of an algebra. It is often useful to study this abstractly, i.e., forgetting
about the original space on which the operators X act. This leads us to
the concept of a Banach algebra. In the following of this section we work
exclusively over the field C of complex numbers.

Definition 5.1 (Banach Algebra). A is called a Banach algebra iff it is a
complete normable topological algebra.

Proposition 5.2. Let A be a complete normable tvs and an algebra. Then,
A is a Banach algebra iff there exists a compatible norm on A such that
‖a · b‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ A. Moreover, if A is unital then it is a
Banach algebra iff there exists a compatible norm that satisfies in addition
‖e‖ = 1.

Proof. Suppose that A admits a norm generating the topology and satisfying
‖a · b‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ A. Fix a, b ∈ A and let ε > 0. Choose δ > 0
such that

(‖a‖ + ‖b‖)δ + δ2 < ε.

Then,

‖(a+ x) · (b+ y) − a · b‖ = ‖a · y+ x · b+ x · y‖ ≤ ‖a · y‖ + ‖x · b‖ + ‖x · y‖
≤ ‖a‖ · ‖y‖ + ‖x‖ · ‖b‖ + ‖x‖ · ‖y‖ < ε

if x, y ∈ Bδ(0), showing continuity of multiplication.
Now suppose that A is a Banach algebra. Let ‖ ·‖′ be a norm generating

the topology. By continuity there exists δ > 0 such that ‖a · b‖′ ≤ 1 for all
a, b ∈ Bδ(0). But this implies ‖a · b‖′ ≤ δ−2‖a‖′ · ‖b‖′ for all a, b ∈ A. It is
then easy to see that ‖a‖ := δ−2‖a‖′ for all a ∈ A defines a norm that is
topologically equivalent and satisfies ‖a · b‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ A.

Now suppose that A is a unital Banach algebra. Let ‖ · ‖′ be a norm
generating the topology. As we have just seen there exists a constant c > 0
such that ‖a · b‖′ ≤ c‖a‖′ · ‖b‖′ for all a, b ∈ A. We claim that

‖a‖ := sup
‖b‖′≤1

‖a · b‖′ ∀a ∈ A
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defines a topologically equivalent norm with the desired properties. It is
easy to see that ‖ · ‖ is a seminorm. Now note that

‖a‖ = sup
‖b‖′≤1

‖a · b‖′ ≤ c sup
‖b‖′≤1

‖a‖′ · ‖b‖′ = c‖a‖′ ∀a ∈ A.

On the other hand we have

‖a‖ = sup
‖b‖′≤1

‖a · b‖′ ≥ ‖a · e‖′

‖e‖′ = ‖a‖′

‖e‖′ ∀a ∈ A.

This shows that ‖ · ‖ is indeed a norm and generates the same topology as
‖ · ‖′. The proof of the property ‖a · b‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ A now
proceeds as in Exercise 28. Finally, it is easy to see that ‖e‖ = 1.

We have already seen the prototypical example of a Banach algebra in
Exercise 28: The algebra of continuous linear operators CL(X,X) on a
Banach space X.

Exercise 30. Let T be a compact topological space. Show that C(T,C)
with the supremum norm is a unital commutative Banach algebra.

Exercise 31. Consider the space l1(Z), i.e., the space of complex sequences
{an}n∈Z with ‖a‖ :=

∑
n∈Z |an| < ∞. 1. Show that this is a Banach space.

2. Define a multiplication by convolution, i.e., (a?b)n :=
∑

k∈Z akbn−k. Show
that this is well defined and yields a commutative Banach algebra.

Proposition 5.3. Let A be a unital Banach algebra and a ∈ A. If ‖e−a‖ <
1 then a is invertible. Moreover, in this case

a−1 =
∞∑

n=0
(e− a)n and ‖a−1‖ ≤ 1

1 − ‖e− a‖
.

Proof. Exercise.

Proposition 5.4. Let A be a unital Banach algebra. Denote the subset
of invertible elements of A by IA. Then, IA is open. Moreover, the map
IA → IA : a 7→ a−1 is continuous.

Proof. Consider an invertible element a ∈ IA and choose ε > 0. Set

δ := min
{1

2
‖a−1‖−1,

1
2
ε‖a−1‖−2

}
.
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Take b ∈ Bδ(a). Then b = a(e+ a−1(b− a)). But

‖a−1(b− a)‖ ≤ ‖a−1‖‖b− a‖ < ‖a−1‖δ ≤ 1
2
.

So by Proposition 5.3 the element e+a−1(b−a) is invertible. Consequently,
b is a product of invertible elements and hence itself invertible. Therefore,
Bδ(a) ⊆ IA and IA is open. Furthermore, using the same inequality we find
by Proposition 5.3 that

‖(e+ a−1(b− a))−1‖ ≤ 1
1 − ‖a−1(b− a)‖

< 2.

This implies

‖b−1‖ ≤ ‖a−1‖‖(e+ a−1(b− a))−1‖ < 2‖a−1‖.

Hence,

‖a−1 − b−1‖ = ‖a−1(b− a)b−1‖ ≤ ‖a−1‖‖b−1‖‖b− a‖ < 2‖a−1‖2δ ≤ ε.

This shows the continuity of the inversion map, completing the proof.

Definition 5.5. Let A be a unital Banach algebra and a ∈ A. Then, the
set σA(a) := {λ ∈ C : λe− a not invertible} is called the spectrum of a.

Proposition 5.6. Let A be a unital Banach algebra and a ∈ A. Then
the spectrum σA(a) of a is a compact subset of C. Moreover, |λ| ≤ ‖a‖ if
λ ∈ σA(a).

Proof. Consider λ ∈ C such that |λ| > ‖a‖. Then, ‖λ−1a‖ = |λ−1|‖a‖ < 1.
So, e−λ−1a is invertible by Proposition 5.3. Equivalently, λe−a is invertible
and hence λ /∈ σA(a). This proves the second statement and also implies
that σA(a) is bounded.

It remains to show that σA(a) is closed. Take λ /∈ σA(a). Set ε :=
‖(λe − a)−1‖−1. We claim that for all λ′ ∈ Bε(λ) the element λ′e − a
is invertible. Note that ‖(λ − λ′)(λe − a)−1‖ = |λ − λ′|‖(λe − a)−1‖ <
ε‖(λe− a)−1‖ = 1. So by Proposition 5.3 the element e− (λ−λ′)(λe− a)−1

is invertible. But the product of invertible elements is invertible and so is
hence λ′e− a = (λe− a)(e− (λ− λ′)(λe− a)−1), proving the claim. Thus,
C \ σA(a) is open and σA(a) is closed, completing the proof.

Lemma 5.7. Let A be a unital algebra and a, b ∈ A. Suppose that a · b and
b · a are invertible. Then, a and b are separately invertible.
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Proof. Exercise.

Theorem 5.8 (Spectral Mapping Theorem). Let A be a unital Banach al-
gebra, p a complex polynomial in one variable and a ∈ A. Then, σA(p(a)) =
p(σA(a)).

Proof. If p is a constant the statement is trivially satisfied. We thus assume
in the following that p has degree at least 1.

We first prove that p(σA(a)) ⊆ σA(p(a)). Let λ ∈ C. Then the polyno-
mial in t given by p(t)−p(λ) can be decomposed as p(t)−p(λ) = q(t)(t−λ)
for some polynomial q. In particular, p(a) − p(λ) = q(a)(a− λ) in A. Sup-
pose p(λ) /∈ σA(p(a)). Then the left hand side is invertible and so must be
the right hand side. By Lemma 5.7 each of the factors must be invertible.
In particular, a−λ is invertible and so λ /∈ σA(a). We have thus shown that
λ ∈ σA(a) implies p(λ) ∈ σA(p(a)).

We proceed to prove that σA(p(a)) ⊆ p(σA(a)). Let µ ∈ C and factorize
the polynomial in t given by p(t) − µ, i.e., p(t) − µ = c(t − γ1) · · · (t − γn),
where c 6= 0. We apply this to a to get p(a)−µ = c(a−γ1) · · · (a−γn). Now
if µ ∈ σA(p(a)), then the left hand side is not invertible. Hence, at least one
factor a− γk must be non-invertible on the right hand side. So, γk ∈ σA(a)
and also µ = p(γk). Thus, µ ∈ p(σA(a)). This completes the proof.

Definition 5.9. Let A be a Banach algebra and a ∈ A. We define the
spectral radius of a as

rA(a) := inf
n∈N

‖an‖1/n.

Lemma 5.10. Let {cn}n∈N be a sequence of non-negative real numbers such
that cn+m ≤ cncm for all n,m ∈ N. Then {c1/n

n }n∈N converges to infn∈N c
1/n
n .

Proof. Define c0 := 1. For fixed m decompose any positive integer n =
k(n)m+ r(n) such that r(n), k(n) ∈ N0 and r(n) < m. Then,

c1/n
n ≤ c

1/n
k(n)mc

1/n
r(n) ≤ ck(n)/n

m c
1/n
r(n).

Since r(n) is bounded and k(n)/n converges to 1/m for large n the right
hand side tends to c1/m

m for large n. This implies,

lim sup
n→∞

c1/n
n ≤ c1/m

m .

Since m was arbitrary we conclude,

lim sup
n→∞

c1/n
n ≤ inf

n∈N
c1/n

n ≤ lim inf
n→∞

c1/n
n .

This completes the proof.
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Proposition 5.11. Let A be a Banach algebra and a ∈ A. Then,

lim
n→∞

‖an‖1/n exists and is equal to inf
n∈N

‖an‖1/n.

Proof. If a is nilpotent (i.e., an = 0 for some n) the statement is trivial.
Assume otherwise and set cn := an. Applying Lemma 5.10 yields the result.

Lemma 5.12. Let A be a unital Banach algebra, ψ : A → C linear and
continuous, a ∈ A. Then the map f : C \ σA(a) → C given by f(z) :=
ψ
(
(a− ze)−1) is holomorphic in all its domain.

Proof. Let z ∈ C \σA(a). Since σA(a) is closed, there exists r > 0 such that
ξ 7→ (a− (z+ ξ)e)−1 is well defined if ξ ∈ Br(0). For ξ ∈ Br(0) we thus have

(a− (z + ξ)e)−1 − (a− ze)−1

= (a− ze)(a− (z + ξ)e)−1(a− ze)−1

− (a− (z + ξ)e)(a− (z + ξ)e)−1(a− ze)−1

= (a− ze− a+ (z + ξ)e)(a− (z + ξ)e)−1(a− ze)−1

= ξ(a− (z + ξ)e)−1(a− ze)−1.

In the first equality we have used the commutativity of the subalgebra of A
that is generated by polynomials in a. Supposing ξ 6= 0 we divide by ξ and
apply ψ on both sides yielding,

f(z + ξ) − f(z)
ξ

= ψ
(
(a− (z + ξ)e)−1(a− ze)−1

)
.

Since inversion in A is continuous (Proposition 5.4), the right hand side of
this equality is continuous in ξ and we may take the limit,

lim
|ξ|→0

f(z + ξ) − f(z)
ξ

= ψ
(
(a− ze)−1(a− ze)−1

)
.

This shows that f is complex differentiable at z. Since z was arbitrary in
C \ σA(a), this implies that f is holomorphic in C \ σA(a).

Theorem 5.13. Let A be a unital Banach algebra and a ∈ A. Then

rA(a) = sup
λ∈σA(a)

|λ|.

In particular, σA(a) 6= ∅.
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Proof. Choose λ ∈ C such that |λ| > rA(a). Then there exists n ∈ N such
that |λ| > ‖an‖1/n and hence |λn| > ‖an‖. By Proposition 5.6 we know that
λn /∈ σA(an). By Theorem 5.8 with p(t) = tn this implies λ /∈ σA(a). This
shows |λ| ≤ rA(a) for all λ ∈ σA(a).

Applying Proposition 5.3 to e− a/z yields the power series expansion

(a− ze)−1 =
∞∑

n=0
−anz−n−1

for |z| > ‖a‖. Given a continuous linear functional ψ : A → C we obtain the
Laurent series

ψ
(
(a− ze)−1

)
=

∞∑
n=0

−ψ(an)z−n−1.

However, the left hand side is holomorphic in C \σA(a) due to Lemma 5.12.
Thus, the inner radius of convergence of the Laurent series is at most ρ :=
supλ∈σA(a) |λ|, supposing that σA(a) 6= ∅. This is equivalent to the statement

lim sup
n→∞

|ψ (an)|1/n ≤ ρ.

Given µ > ρ we obtain

lim sup
n→∞

∣∣∣∣ψ ((aµ
)n)∣∣∣∣1/n

≤ ρ

µ
< 1.

This in turn implies
sup
n∈N

∣∣∣∣ψ ((aµ
)n)∣∣∣∣ < ∞.

Define now the subset B ⊆ A given by

B :=
{
a

µ
,

(
a

µ

)2
,

(
a

µ

)3
, . . .

}
.

Identifying A as a Banach space isometrically with the corresponding sub-
space of A∗∗ according to Proposition 4.25 allows to view B as a subset of
CL(A∗,C). We may thus apply the Banach-Steinhaus Theorem in the form
of Corollary 3.51 to conclude that there is a constant M > 0 such that for
all n ∈ N, ∣∣∣∣ψ ((aµ

)n)∣∣∣∣ ≤ M‖ψ‖.

This in turn implies, for all n ∈ N,∥∥∥∥(aµ
)n∥∥∥∥ ≤ M.
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From this we conclude,

lim sup
n→∞

‖an‖1/n ≤ µ.

Due to the existence of the ordinary limit (Proposition 5.11) together with
the fact that µ > ρ was arbitrary we obtain,

rA(a) = lim
n→∞

‖an‖1/n ≤ ρ.

This completes the proof that rA(a) = ρ.
Exercise.Complete the proof by showing that σA(a) 6= ∅.

Theorem 5.14 (Gelfand-Mazur). Let A be a unital Banach algebra such
that all its non-zero elements are invertible. Then A is isomorphic to C as
a Banach algebra.

Proof. Exercise.

5.2 The Gelfand Transform

Suppose we have some topological space T . Then, this space gives rise
to a commutative algebra, namely the algebra of continuous functions on
T (with complex values say). A natural question arises thus: If we are
given a commutative algebra, is the algebra of continuous functions on some
topological space? We might refine the question, considering more specific
spaces such as Hausdorff spaces, manifolds etc. On the other hand we could
also consider other classes of functions, e.g., differentiable ones etc. The
Gelfand transform goes towards answering this question in the context of
unital commutative Banach algebras on the one hand and compact Hausdorff
spaces on the other.

5.2.1 Ideals

Definition 5.15. Let A be an algebra. An ideal in A is a vector subspace
J of A such that aJ ⊆ J and Ja ⊆ J for all a ∈ A. An ideal is called proper
iff it is not equal to A. An ideal is called maximal iff it is proper and it is
not contained in any other proper ideal.

The special significance of maximal ideals for our present purposes is
revealed by the following Exercise. This also provides a preview of what we
are going to show.
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Exercise 32. Consider the Banach algebra C(T,C) of Exercise 30. Assume
in addition that T is Hausdorff. 1. Show that for any non-empty subset U
of T the set {f ∈ C(T,C) : f(U) = 0} forms a proper closed ideal. 2. Show
that the maximal ideals are in one-to-one correspondence to points of T .

Proposition 5.16. Let A be a Banach algebra. Then, the closure of an
ideal is an ideal.

Proof. Let J be an ideal. We already know that J is a vector subspace. It
remains to show the property aJ ⊆ J and Ja ⊆ J for all a ∈ A. Consider b ∈
J . Then, there is a sequence {bn}n∈N with bn ∈ J converging to b. Take now
a ∈ A and consider the sequences {abn}n∈N and {bna}n∈N. Since J is an ideal
the elements of these sequences are all in J . And since multiplication by a
fixed element is continuous the sequences converge to ab and ba respectively.
So ba ∈ J and ab ∈ J . This completes the proof.

Proposition 5.17. Let A be a unital Banach algebra.

1. If a ∈ A is invertible it is not contained in any proper ideal.

2. Maximal ideals are closed.

3. Any proper ideal is contained in a maximal ideal.

Proof. Suppose J is an ideal containing an invertible element a ∈ A. Then,
a−1a = e ∈ J and thus J = A. This proves 1. Suppose J is a proper
ideal. Then, J is an ideal by Proposition 5.16. On the other hand, by 1. the
intersection of the set IA of invertible elements of A with J is empty. But
by Proposition 5.4 this set is open, so IA ∩ J = ∅. Since e ∈ IA, J 6= A, i.e.,
J is proper. So we get an inclusion of proper ideals, J ⊆ J . If J is maximal
we must therefore have J = J . This proves 2. The proof of 3 is a standard
application of Zorn’s Lemma.

Proposition 5.18. Let A be a Banach algebra and J a closed proper ideal.
Then, A/J is a Banach algebra with the quotient norm. If A is unital then
so is A/J . If A is commutative then so is A/J .

Proof. Exercise.

Definition 5.19. Let A be a Banach algebra. The set of maximal ideals of
A is called the maximal ideal space and denoted by MA. The set of maximal
ideals with codimension 1 is denoted by M1

A.



Robert Oeckl – FA NOTES – 05/12/2011 77

Proposition 5.20. Let A be a commutative unital Banach algebra. Then,
maximal ideals have codimension 1. In particular, MA = M1

A.

Proof. Let J be a maximal ideal. By Proposition 5.17.2, J is closed. Hence,
by Proposition 5.18, A/J is a unital commutative Banach algebra. We
show that every non-zero element of A/J is invertible. For a ∈ A \ J set
Ja := {ab + c : b ∈ A and c ∈ J}. It is easy to see that Ja is an ideal and
J ⊂ Ja as well as Ja 6= J . Since J is maximal we find Ja = A. But his
means there is a b ∈ A such that [a][b] = [e] in A/J , i.e., [a] is invertible in
A/J . But every non-zero element of A/J arises as [a] with a ∈ A\J , so they
are all invertible. By the Theorem 5.14 of Gelfand-Mazur we find that A/J
is isomorphic to C and hence 1-dimensional. So, J must have codimension
1.

5.2.2 Characters

Definition 5.21. Let A be a Banach algebra. An algebra homomorphism
φ : A → C is called a character of A.

Proposition 5.22. Let A be a Banach algebra. Then, any character φ :
A → C is continuous. Moreover, ‖φ‖ ≤ 1. If A is also unital and φ 6= 0
then φ(e) = 1 and ‖φ‖ = 1.

Proof. Consider an algebra homomorphism φ : A → C. Suppose |φ(a)| >
‖a‖ for some a ∈ A. Then we can find λ ∈ C such that φ(λa) = 1 while
‖λa‖ < 1. Set b :=

∑∞
n=1(λa)n. Then b = λa + λab and we obtain the

contradiction φ(b) = φ(λa) + φ(λa)φ(b) = 1 + φ(b). Thus, |φ(a)| ≤ ‖a‖ for
all a ∈ A and φ must be continuous. Also, ‖φ‖ ≤ 1.

Now assume in addition that A is unital and φ 6= 0. Then there exists
a ∈ A such that φ(a) 6= 0. We deduce φ(e) = 1 since φ(a) = φ(ea) =
φ(e)φ(a) and thus ‖φ‖ ≥ 1.

Definition 5.23. Let A be a Banach algebra. The set of non-zero characters
on A is called the character space or Gelfand space of A, denoted by ΓA. We
view ΓA as a subset of A∗, but equipped with the weak∗ topology. Define
the map A → C(ΓA,C) given by a 7→ â where â(φ) := φ(a). This map is
called the Gelfand transform.

Proposition 5.24. Let A be a unital Banach algebra. Then, ΓA is a com-
pact Hausdorff space.
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Proof. Since A∗ is Hausdorff with the weak∗ topology so is its subset ΓA.
Let φ ∈ ΓA. By Proposition 5.22, φ is contained in the unit ball B1(0) ⊂
A∗. But by Corollary 4.22, B1(0) is compact in the weak∗ topology so ΓA

is relatively compact. It remains to show that ΓA is closed in the weak∗

topology. Suppose φ ∈ ΓA. Pick two arbitrary elements a, b ∈ A. We know
that the Gelfand transforms â, b̂, âb are continuous functions on A∗ with the
weak∗ topology. Hence, choosing an arbitrary ε > 0 we can find φ′ ∈ ΓA

such that |φ′(a) − φ(a)| < ε and |φ′(b) − φ(b)| < ε and |φ′(ab) − φ(ab)| < ε.
Exercise.Explain! Then, |φ′(a)φ′(b)−φ(a)φ(b)| < ε(|φ(a)|+|φ(b)|+ε). But,
φ′ is a character, so φ′(a)φ′(b) = φ′(ab). Thus, |φ(a)φ(b) − φ(ab)| < ε(1 +
|φ(a)|+ |φ(b)|+ε). Since ε was arbitrary we conclude that φ(a)φ(b) = φ(ab).
This argument holds for any a, b so φ is a character. We have thus shown
that either ΓA = ΓA or ΓA = ΓA ∪{0}. To exclude the second possibility we
need the unitality of A. Consider the subset E := {φ ∈ A∗ : φ(e) = 1} ⊂ A∗.
This subset is closed in the weak∗ topology since it is the preimage of the
closed set {1} ⊂ C under the Gelfand transform ê of the unit e of A. Now,
ΓA ⊆ E, but {0} /∈ E, so {0} /∈ ΓA.

We are now ready to link the character space with the maximal ideal
space introduced earlier. They are (essentially) the same!

Theorem 5.25. Let A be a Banach algebra. There is a natural map γ :
ΓA → M1

A given by φ 7→ kerφ. If A is unital, this map is bijective.

Proof. Consider φ ∈ ΓA. Suppose a ∈ kerφ. Then, for any b ∈ A we
have ab ∈ kerφ and ba ∈ kerφ since φ(ab) = φ(a)φ(b) = 0 and φ(ba) =
φ(b)φ(a) = 0. Thus, kerφ is an ideal. It is proper since φ 6= 0. Now choose
a ∈ A such that φ(a) 6= 0. For arbitrary b ∈ A there is then a λ ∈ C such
that φ(b) = φ(λa), i.e., φ(b − λa) = 0 and b − λa ∈ kerφ. In particular,
b ∈ λa+ kerφ. So kerφ has codimension 1 in A and must be maximal. This
shows that γ is well defined.

Suppose now that A is unital and that J is a maximal ideal of codimen-
sion 1. Note that we can write any element a of A uniquely as a = λe + b
where λ ∈ C and b ∈ J . In order for J = kerφ for some φ ∈ ΓA we must
then have φ(λe+b) = λφ(e)+φ(b) = λ. This determines φ uniquely. Hence,
γ is injective. On the other hand, this formula defines a non-zero linear map
φ : A → C. It is easily checked that it is multiplicative and thus a character.
Hence, γ is surjective.

Proposition 5.26. Let A be a unital Banach algebra and a ∈ A. Then,
{φ(a) : φ ∈ ΓA} ⊆ σA(a). If A is commutative, then even {φ(a) : φ ∈ ΓA} =
σA(a). In particular, ΓA 6= 0.
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Proof. Suppose λ = φ(a) for some φ ∈ ΓA. Then, φ(λe − a) = 0, i.e.,
λe − a ∈ kerφ. But by Theorem 5.25, kerφ is a maximal ideal which by
Proposition 5.17.1 cannot contain an invertible element. So λe − a is not
invertible and λ ∈ σA(a). This proves the first statement.

Suppose now that A is commutative and let λ ∈ σA(a). Define J :=
{b(λe − a) : b ∈ A}. It is easy to see that J defines an ideal. It is proper,
since λe− a is not invertible. So, by Proposition 5.17.3 it is contained in a
maximal ideal J ′. This maximal ideal has codimension 1 by Proposition 5.20
and induces by Theorem 5.25 a non-zero character φ with kerφ = J ′. Hence,
φ(λe− a) = 0 and φ(a) = λ. This completes the proof.

When ΓA is compact, then the set of continuous functions of ΓA forms
a unital commutative Banach algebra by Exercise 30. We then have the
following Theorem.

Theorem 5.27 (Gelfand Representation Theorem). Let A be a unital Ba-
nach algebra. The Gelfand transform A → C(ΓA,C) is a continuous unital
algebra homomorphism. The image of A under the Gelfand transform, de-
noted Â, is a normed subalgebra of C(ΓA,C). Moreover, ‖â‖ ≤ rA(a) ≤ ‖a‖
and σÂ(â) ⊆ σA(a) for all a ∈ A. If A is commutative we have the sharper
statements ‖â‖ = rA(a) and σÂ(â) = σA(a).

Proof. The property of being a unital algebra homomorphism is clear. For
a ∈ A we have ‖â‖ = supφ∈ΓA

|φ(a)|. By Proposition 5.26 combined with
Theorem 5.13 we then find ‖â‖ ≤ rA(a) and in the commutative case ‖â‖ =
rA(a). On the other hand Proposition 5.6 combined with Theorem 5.13
implies rA(a) ≤ ‖a‖. Thus, the Gelfand transform is bounded by 1 and hence
continuous. Since the Gelfand transform is a unital algebra homomorphism,
invertible elements are mapped to invertible elements, so σÂ(â) ⊆ σA(a).
Let a ∈ A and consider λ ∈ C. If φ(a) = λ for some φ ∈ ΓA then λê − â
vanishes on this φ and cannot be invertible in Â, i.e., λ ∈ σÂ(â). Using
Proposition 5.26 we conclude σÂ(â) ⊇ σA(a) in the commutative case.

Proposition 5.28. Let A be a unital commutative Banach algebra. Suppose
that ‖a2‖ = ‖a‖2 for all a ∈ A. Then, the Gelfand transform A → C(ΓA,C)
is isometric. In particular, it is injective and its image Â is a Banach
algebra.

Proof. Under the assumption limn→∞ ‖an‖1/n, which exists by Proposi-
tion 5.11, is equal to ‖a‖ for all a ∈ A. By the same Proposition then
rA(a) = ‖a‖. So by Theorem 5.27, ‖â‖ = rA(a) = ‖a‖. Isometry implies of



80 Robert Oeckl – FA NOTES – 05/12/2011

course injectivity. Moreover, it implies that the image is complete since the
domain is complete. So Â is a Banach algebra.

Exercise 33. Let A = C(T,C) be the Banach algebra of Exercises 30 and
32. Show that ΓA = T as topological spaces in a natural way and that the
Gelfand transform is the identity under this identification.
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6 Hilbert Spaces

6.1 The Fréchet-Riesz Representation Theorem

Definition 6.1. LetX be an inner product space. A pair of vectors x, y ∈ X
is called orthogonal iff 〈x, y〉 = 0. We write x ⊥ y. A pair of subsets
A,B ⊆ X is called orthogonal iff x ⊥ y for all x ∈ A and y ∈ B. Moreover,
if A ⊆ X is some subset we define its orthogonal complement to be

A⊥ := {y ∈ X : x ⊥ y ∀x ∈ A}.

Exercise 34. Let X be an inner product space.
1. Let x, y ∈ X. If x ⊥ y then ‖x‖2 + ‖y‖2 = ‖x+ y‖2.

2. Let A ⊆ X be a subset. Then A⊥ is a closed subspace of X.

3. A ⊆ (A⊥)⊥.

4. A⊥ = (spanA)⊥.

5. A ∩A⊥ ⊆ {0}.
Proposition 6.2. Let H be a Hilbert space, F ⊆ H a closed and convex
subset and x ∈ H. Then, there exists a unique element x̃ ∈ F such that

‖x̃− x‖ = inf
y∈F

‖y − x‖.

Proof. Define a := infy∈F ‖y−x‖. Let {yn}n∈N be a sequence in F such that
limn→∞ ‖yn − x‖ = a. Let ε > 0 and choose n0 ∈ N such that ‖yn − x‖2 ≤
a2 + ε for all n ≥ n0. Now let n,m ≥ n0. Then, using the parallelogram
equality of Theorem 2.50 we find

‖yn − ym‖2 = 2‖yn − x‖2 + 2‖ym − x‖2 − ‖yn + ym − 2x‖2

= 2‖yn − x‖2 + 2‖ym − x‖2 − 4
∥∥∥∥yn + ym

2
− x

∥∥∥∥2

≤ 2(a2 + ε) + 2(a2 + ε) − 4a2 = 4ε

This shows that {yn}n∈N is a Cauchy sequence which must converge to some
vector x̃ ∈ F with the desired properties since F is complete.

It remains to show that x̃ is unique. Suppose x̃, x̃′ ∈ F both satisfy the
condition. Then, by a similar use of the parallelogram equation as above,

‖x̃−x̃′‖2 = 2‖x̃−x‖2+2‖x̃′−x‖2−4
∥∥∥∥ x̃+ x̃′

2
− x

∥∥∥∥2
≤ 2a2+2a2−4a2 = 0.

That is, x̃′ = x̃, completing the proof.
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Lemma 6.3. Let H be a Hilbert space, F ⊆ H a closed and convex subset,
x ∈ H and x̃ ∈ F . Then, the following are equivalent:

1. ‖x̃− x‖ = infy∈F ‖y − x‖

2. <〈x̃− y, x̃− x〉 ≤ 0 ∀y ∈ F

Proof. Suppose 2. holds. Then, for any y ∈ F we have

‖y − x‖2 = ‖(y − x̃) + (x̃− x)‖2

= ‖y − x̃‖2 + 2<〈y − x̃, x̃− x〉 + ‖x̃− x‖2 ≥ ‖x̃− x‖2.

Conversely, suppose 1. holds. Fix y ∈ F and consider the continuous
map [0, 1] → F given by t 7→ yt := (1 − t)x̃+ ty. Then,

‖x̃− x‖2 ≤ ‖yt − x‖2 = ‖t(y − x̃) + (x̃− x)‖2

= t2‖y − x̃‖2 + 2t<〈y − x̃, x̃− x〉 + ‖x̃− x‖2.

Subtracting ‖x̃− x‖2 and dividing for t ∈ (0, 1] by t leads to,

1
2
t‖y − x̃‖2 ≥ <〈x̃− y, x̃− x〉.

This implies 2.

Lemma 6.4. Let H be a Hilbert space, F ⊆ H a closed subspace, x ∈ H
and x̃ ∈ F . Then, the following are equivalent:

1. ‖x̃− x‖ = infy∈F ‖y − x‖

2. 〈y, x̃− x〉 = 0 ∀y ∈ F

Proof. Exercise.

Proposition 6.5. Let H be a Hilbert space, F ⊆ H a closed proper subspace.
Then, F⊥ 6= {0}.

Proof. Since F is proper, there exists x ∈ H \ F . By Proposition 6.2 there
exists an element x̃ ∈ F such that ‖x̃−x‖ = infy∈F ‖y−x‖. By Lemma 6.4,
〈y, x̃− x〉 = 0 for all y ∈ F . That is, x̃− x ∈ F⊥.

Theorem 6.6 (Fréchet-Riesz Representation Theorem). Let H be a Hilbert
space. Then, the map Φ : H → H∗ given by (Φ(x))(y) := 〈y, x〉 for all
x, y ∈ H is anti-linear, bijective and isometric.
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Proof. The anti-linearity of Φ follows from the properties of the scalar
product. Observe that for all x ∈ H, ‖Φ(x)‖ = sup‖y‖=1 |〈y, x〉| ≤ ‖x‖
because of the Schwarz inequality (Theorem 2.46). On the other hand,
(Φ(x))(x/‖x‖) = ‖x‖ for all x ∈ H \ {0}. Hence, ‖Φ(x)‖ = ‖x‖ for all
x ∈ H, i.e., Φ is isometric. It remains to show that Φ is surjective. Let
f ∈ H∗ \ {0}. Then ker f is a closed proper subspace of H and by Propo-
sition 6.5 there exists a vector v ∈ (ker f)⊥ \ {0}. Observe that for all
x ∈ H,

x− f(x)
f(v)

v ∈ ker f.

Hence,

〈x, v〉 =
〈
x− f(x)

f(v)
v + f(x)

f(v)
v, v

〉
= f(x)
f(v)

〈v, v〉

In particular, setting

w := f(v)
‖v‖2 v

we see that Φ(w) = f .

Corollary 6.7. Let H be a Hilbert space. Then, H∗ is also a Hilbert space.
Moreover, H is reflexive, i.e., H∗∗ is naturally isomorphic to H.

Proof. By Theorem 6.6 the spaces H and H∗ are isometric. This implies in
particular, that H∗ is complete and that its norm satisfies the parallelogram
equality, i.e., that it is a Hilbert space. Indeed, it is easily verified that the
inner product is given by

〈Φ(x),Φ(y)〉H∗ = 〈y, x〉H ∀x, y ∈ H.

Consider the canonical linear map iH : H → H∗∗. It is easily verified that
iH = Ψ ◦ Φ, where Ψ : H∗ → H∗∗ is the corresponding map of Theorem 6.6.
Thus, iH is a linear bijective isometry, i.e., an isomorphism of Hilbert spaces.

6.2 Orthogonal Projectors

Theorem 6.8. Let H be a Hilbert space and F ⊆ H a closed subspace such
that F 6= {0}. Then, there exists a unique operator PF ∈ CL(H,H) with the
following properties:

1. PF |F = 1F .



84 Robert Oeckl – FA NOTES – 05/12/2011

2. kerPF = F⊥.

Moreover, PF also has the following properties:

3. PF (H) = F .

4. PF ◦ PF = PF .

5. ‖PF ‖ = 1.

6. Given x ∈ H, PF (x) is the unique element of F such that ‖PF (x) −
x‖ = infy∈F ‖y − x‖.

7. Given x ∈ H, PF (x) is the unique element of F such that x−PF (x) ∈
F⊥.

Proof. We define PF to be the map x 7→ x̃ given by Proposition 6.2. Then,
clearly PF (H) = F and PF (x) = x if x ∈ F and thus PF ◦ PF = PF . By
Lemma 6.4 we have PF (x) − x ∈ F⊥ for all x ∈ H. Since F⊥ is a subspace
we have

(λ1PF (x1) − λ1x1) + (λ2PF (x2) − λ2x2) ∈ F⊥

for x1, x2 ∈ H and λ1, λ2 ∈ K arbitrary. Rewriting this we get,

(λ1PF (x1) + λ2PF (x2)) − (λ1x1 + λ2x2) ∈ F⊥.

But Lemma 6.4 also implies that if given x ∈ H we have z − x ∈ F⊥ for
some z ∈ F , then z = PF (x). Thus,

λ1PF (x1) + λ2PF (x2) = PF (λ1x1 + λ2x2).

That is, PF is linear. Using again that x−PF (x) ∈ F⊥ we have x−PF (x) ⊥
PF (x) and hence the Pythagoras equality (Exercise 34.1)

‖x− PF (x)‖2 + ‖PF (x)‖2 = ‖x‖2 ∀x ∈ H.

This implies ‖PF (x)‖ ≤ ‖x‖ for all x ∈ H. In particular, PF is continuous.
On the other hand ‖PF (x)‖ = ‖x‖ if x ∈ F . Therefore, ‖PF ‖ = 1. Now
suppose x ∈ kerPF . Then, 〈y, x〉 = −〈y, PF (x) − x〉 = 0 for all y ∈ F and
hence x ∈ F⊥. That is, kerPF ⊆ F⊥. Conversely, suppose now x ∈ F⊥.
Then, 〈y, PF (x)〉 = 〈y, PF (x)−x〉 = 0 for all y ∈ F . Thus, PF (x) ∈ F⊥. But
we know already that PF (x) ∈ F . Since, F ∩ F⊥ = {0} we get PF (x) = 0,
i.e., x ∈ kerPF . Then, F⊥ ⊆ kerPF . Thus, kerPF = F⊥. This concludes
the proof the the existence of PF with properties 1, 2, 3, 4, 5, 6 and 7.



Robert Oeckl – FA NOTES – 05/12/2011 85

Suppose now there is another operator QF ∈ CL(H,H) which also has
the properties 1 and 2. We proceed to show that QF = PF . Let x ∈
H arbitrary. Since PF (x) − x ∈ F⊥, property 2 of QF implies QF (x) =
QF (PF (x)). On the other hand PF (x) ∈ F so by property 1 of QF we have
QF (PF (x)) = PF (x). Hence QF (x) = PF (x). Since x was arbitrary we have
QF = PF , completing the proof.

Definition 6.9. Given a Hilbert space H and a closed subspace F , the
operator PF ∈ CL(H,H) constructed in Theorem 6.8 is called the orthogonal
projector onto the subspace F .

Corollary 6.10. Let H be a Hilbert space and F a closed subspace. Let
PF be the associated orthogonal projector. Then 1 − PF is the orthogonal
projector onto F⊥. That is, PF ⊥ = 1 − PF .

Proof. Let x ∈ F⊥. Then, (1 − PF )(x) = x since kerPF = F⊥ by The-
orem 6.8.1. That is, (1 − PF )|F ⊥ = 1F ⊥ . On the other hand, suppose
(1 − PF )(x) = 0. By Theorem 6.8.1. and 3. this is equivalent to x ∈ F .
That is, ker(1 − PF ) = F . Applying Theorem 6.8 to F⊥ yields the conclu-
sion PF ⊥ = 1 − PF due to the uniqueness of PF ⊥ .

Corollary 6.11. Let H be a Hilbert space and F a closed subspace. Then,
F = (F⊥)⊥.

Proof. Exercise.

Definition 6.12. Let H1 and H2 be inner product spaces. Then, H1 ⊕2H2
denotes the direct sum as a vector space with the inner product

〈x1 + x2, y1 + y2〉 := 〈x1, y1〉 + 〈x2, y2〉 ∀x1, x2 ∈ H1,∀y1, y2 ∈ H2.

Proposition 6.13. Let H1 and H2 be inner product spaces. Then, the
topology of H1 ⊕2 H2 agrees with the topology of the direct sum of H1 and
H2 as tvs. That is, it agrees with the product topology of H1 × H2. In
particular, if H1 and H2 are complete, then H1 ⊕2 H2 is complete.

Proof. Exercise.

Corollary 6.14. Let H be a Hilbert space and F a closed subspace. Then,
H = F ⊕2 F

⊥.

Proof. Exercise.
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6.3 Orthonormal Bases

Definition 6.15. Let H be a Hilbert space and S ⊆ H a subset such that
‖s‖ = 1 for all s ∈ S and such that 〈s, t〉 6= 0 for s, t ∈ S implies s = t.
Then, S is called an orthonormal system in H. Suppose furthermore that S
is maximal, i.e., that for any orthonormal system T in H such that S ⊆ T
we have S = T . Then, S is called an orthonormal basis of H.

Proposition 6.16. Let H be a Hilbert space and S an orthonormal system
in H. Then, S is linearly independent.

Proof. Exercise.

Proposition 6.17 (Gram-Schmidt). Let H be a Hilbert space and {xn}n∈I

be a linearly independent subset, indexed by the countable set I. Then,
there exists an orthonormal system {sn}n∈I , also indexed by I and such
that span{sn : n ∈ I} = span{xn : n ∈ I}.

Proof. If I is finite we identify it with {1, . . . ,m} for some m ∈ N. Oth-
erwise we identify I with N. We construct the set {sn}n∈I iteratively. Set
s1 := x1/‖x1‖. (Note that xn 6= 0 for any n ∈ I be the assumption of linear
independence.) We now suppose that {s1, . . . , sk} is an orthonormal system
and that span{s1, . . . , sk} = span{x1, . . . , xk}. Set Xk := span{x1, . . . , xk}.
By linear independence yk+1 := xk+1 − PXk

(xk+1) 6= 0. Set sk+1 :=
yk+1/‖yk+1‖. Clearly, sk+1 ⊥ XK , i.e., {s1, . . . , sk+1} is an orthonormal
system. Moreover, span{s1, . . . , sk+1} = span{x1, . . . , xk+1}. If I is finite
this process terminates, leading to the desired result. If I is infinite, it is
clear that this process leads to span{sn : n ∈ N} = span{xn : n ∈ N}.

Proposition 6.18 (Bessel’s inequality). Let H be a Hilbert space, m ∈ N
and {s1, . . . , sm} an orthonormal system in H. Then, for all x ∈ H,

m∑
n=1

|〈x, sn〉|2 ≤ ‖x‖2

Proof. Define y := x−
∑m

n=1〈x, sn〉sn. Then, y ⊥ sn for all n ∈ {1, . . . ,m}.
Thus, applying Pythagoras we obtain

‖x‖2 = ‖y‖2 +
∥∥∥∥∥

m∑
n=1

〈x, sn〉sn

∥∥∥∥∥
2

= ‖y‖2 +
m∑

n=1
|〈x, sn〉|2.

This implies the inequality.
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Lemma 6.19. Let H be a Hilbert space, S ⊂ H an orthonormal system and
x ∈ H. Then, Sx := {s ∈ S : 〈x, s〉 6= 0} is countable.
Proof. Exercise.Hint: Use Bessel’s Inequality (Proposition 6.18).

Proposition 6.20 (Generalized Bessel’s inequality). Let H be a Hilbert
space, S ⊆ H an orthonormal system and x ∈ H. Then∑

s∈S

|〈x, s〉|2 ≤ ‖x‖2.

Proof. By Lemma 6.19, the subset Sx := {s ∈ S : 〈x, s〉 6= 0} is countable.
If Sx is finite we are done due to Proposition 6.18. Otherwise let α : N → Sx

be a bijection. Then, by Proposition 6.18
m∑

n=1
|〈x, sα(n)〉|2 ≤ ‖x‖2

For any m ∈ N. Thus, we may take the limit m → ∞ on the left hand side,
showing that the series converges absolutely and satisfies the inequality.

Definition 6.21. Let X be a tvs and {xi}i∈I an indexed set of elements of
X. We say that the series

∑
i∈I xi converges unconditionally to x ∈ X iff

I0 := {i ∈ I : xi 6= 0} is countable and for any bijection α : N → I the sum∑∞
n=1 xα(n) converges to x.

Proposition 6.22. Let H be a Hilbert space and S ⊂ H an orthonormal
system. Then, P (x) :=

∑
s∈S〈x, s〉s converges unconditionally. Moreover,

P : x 7→ P (x) defines an orthogonal projector onto spanS.
Proof. Fix x ∈ H. We proceed to show that

∑
s∈S〈x, s〉s converges uncon-

ditionally. The set S can be replaced by the set Sx := {s ∈ S : 〈x, s〉 6= 0},
which is countable due to Lemma 6.19. If Sx is even finite we are done. Oth-
erwise, let α : N → Sx be a bijection. Then, given ε > 0 by Proposition 6.20
there is n0 ∈ N such that

∞∑
n=n0+1

|〈x, sα(n)〉|2 < ε2.

For m > k ≥ n0 this implies using Pythagoras,∥∥∥∥∥
m∑

n=1
〈x, sα(n)〉sα(n) −

k∑
n=1

〈x, sα(n)〉sα(n)

∥∥∥∥∥
2

=

∥∥∥∥∥∥
m∑

n=k+1
〈x, sα(n)〉sα(n)

∥∥∥∥∥∥
2

=
m∑

n=k+1
|〈x, sα(n)〉|2 < ε2.
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So the sequence {
∑m

n=1〈x, sα(n)〉sα(n)}m∈N is Cauchy and must converge to
some element yα ∈ H since H is complete. Now let β : N → Sx be another
bijection. Then,

∑∞
n=1〈x, sβ(n)〉sβ(n) = yβ for some yβ ∈ H. We need to

show that yβ = yα. Let m0 ∈ N such that {α(n) : n ≤ n0} ⊆ {β(n) : n ≤
m0}. Then, for m ≥ m0 we have (again using Pythagoras)∥∥∥∥∥

m∑
n=1

〈x, sβ(n)〉sβ(n) −
n0∑

n=1
〈x, sα(n)〉sα(n)

∥∥∥∥∥
2

≤
∞∑

n=n0+1
|〈x, sα(n)〉|2 < ε2.

Taking the limit m → ∞ we find∥∥∥∥∥yβ −
n0∑

n=1
〈x, sα(n)〉sα(n)

∥∥∥∥∥ < ε.

But on the other hand we have,∥∥∥∥∥yα −
n0∑

n=1
〈x, sα(n)〉sα(n)

∥∥∥∥∥ < ε.

Thus, ‖yβ − yα‖ < 2ε. Since ε was arbitrary this shows yβ = yα proving the
unconditional convergence.

It is now clear that x 7→ P (x) yields a well defined map P : H → H.
From the definition it is also clear that P (H) ⊆ spanS. Let s ∈ S. Then,

〈x− P (x), s〉 = 〈x, s〉 − 〈P (x), s〉 = 〈x, s〉 − 〈x, s〉 = 0.

That is, x − P (x) ∈ S⊥ = spanS⊥. By Theorem 6.8.7 this implies that P
is the orthogonal projector onto spanS.

Proposition 6.23. Let H be a Hilbert space and S ⊂ H an orthonormal
system. Then, the following are equivalent:

1. S is an orthonormal basis.

2. Suppose x ∈ H and x ⊥ S. Then, x = 0.

3. H = spanS.

4. x =
∑

s∈S〈x, s〉s ∀x ∈ H.

5. 〈x, y〉 =
∑

s∈S〈x, s〉〈s, y〉 ∀x, y ∈ H.

6. ‖x‖2 =
∑

s∈S |〈x, s〉|2 ∀x ∈ H.
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Proof. 1.⇒2.: If there exists x ∈ S⊥ \ {0} then S ∪ {x/‖x‖} would be an
orthonormal system strictly containing S, contradicting the maximality of
S. 2.⇒3.: Note that H = {0}⊥ = (S⊥)⊥ = (spanS⊥)⊥ = spanS. 3.⇒4.:
1(x) = Pspan S(x) =

∑
s∈S〈x, s〉s by Proposition 6.22. 4.⇒5.: Apply 〈·, y〉.

Since the inner product is continuous in the left argument, its application
commutes with the limit taken in the sum. 5.⇒6.: Insert y = x. 6.⇒1.:
Suppose S was not an orthonormal basis. Then there exists y ∈ H \ {0}
such that y ∈ S⊥. But then ‖y‖2 =

∑
s∈S |〈y, s〉|2 = 0, a contradiction.

Proposition 6.24. Let H be a Hilbert space. Then, H admits an orthonor-
mal basis.

Proof. Exercise.Hint: Use Zorn’s Lemma.

Proposition 6.25. Let H be a Hilbert space and S ⊂ H an orthonormal
basis of H. Then, S is countable iff H is separable.

Proof. Suppose S is countable. Let QS denote the set of linear combinations
of elements of S with coefficients in Q. Then, QS is countable and also dense
in H by using Proposition 6.23.3, showing that H is separable. Conversely,
suppose that H is separable. Observe that ‖s − t‖ =

√
2 for s, t ∈ S such

that s 6= t. Thus, the open balls B√
2/2(s) for different s ∈ S are disjoint.

Since H is separable there must be a countable subset of H with at least
one element in each of these balls. In particular, S must be countable.

In the following, we denote by |S| the cardinality of a set S.

Proposition 6.26. Let H be a Hilbert space and S, T ⊂ H orthonormal
basis of H. Then, |S| = |T |.

Proof. If S or T is finite this is clear from linear algebra. Thus, suppose
that |S| ≥ |N| and |T | ≥ |N|. For s ∈ S define Ts := {t ∈ T : 〈s, t〉 6= 0}.
By Lemma 6.19, |Ts| ≤ |N|. Proposition 6.23.2 implies that T ⊆

⋃
s∈S Ts.

Hence, |T | ≤ |S| · |N| = |S|. Using the same argument with S and T
interchanged yields |S| ≤ |T |. Therefore, |S| = |T |.

Proposition 6.27. Let H1 be a Hilbert space with orthonormal basis S1 ⊂
H1 and H2 a Hilbert space with orthonormal basis S2 ⊂ H2. Then, H1 is
isometrically isomorphic to H2 iff |S1| = |S2|.

Proof. Exercise.
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Exercise 35. Let S be a set. Define `2(S) to be the set of maps f : S → K
such that

∑
s∈S |f(s)|2 converges absolutely. (a) Show that `2(S) forms a

Hilbert space with the inner product 〈f, g〉 :=
∑

s∈S f(s)g(s). (b) Let H be
a Hilbert space with orthonormal basis S ⊂ H. Show that H is isomorphic
to `2(S) as a Hilbert space.

Example 6.28. Recall the Banach spaces of Example 3.45, where X is a
measurable space with measure µ. The space L2(X,µ,K) is a Hilbert space
with inner product

〈f, g〉 :=
∫

X
fg.

Exercise 36. Let S1 be the unit circle with the algebra of Borel sets and
µ the Lebesgue measure on S1. Parametrize S1 with an angle φ ∈ [0, 2π) in
the standard way. Show that {φ 7→ einφ/

√
2π}n∈Z is an orthonormal basis

of L2(S1, µ,C).

Exercise 37. Equip the closed interval [−1, 1] with the algebra of Borel sets
and the Lebesgue measure µ. Consider the set of monomials {xn}n∈N as
functions [−1, 1] → C in L2([−1, 1], µ,C). (a) Show that the set {xn}n∈N is
linearly independent and dense. (b) Suppose an orthonormal basis {sn}n∈N
of functions sn ∈ L2([−1, 1], µ,C) is constructed using the algorithm of
Gram-Schmidt (Proposition 6.17) applied to {xn}n∈N. Define pn :=

√
2/(2n+ 1)sn.

Show that

(n+ 1)pn+1(x) = (2n+ 1)xpn(x) − npn−1(x) ∀x ∈ [−1, 1],∀n ∈ N \ {1}.

6.4 Operators on Hilbert Spaces

Definition 6.29. LetH1,H2 be Hilbert spaces and Φi : Hi → H∗
i the associ-

ated anti-linear bijective isometries from Theorem 6.6. Let A ∈ CL(H1,H2)
and A∗ : H∗

2 → H∗
1 its adjoint according to Definition 4.27. We say that

A? ∈ CL(H2,H1) given by A? := Φ−1
1 ◦A∗ ◦ Φ2 is the adjoint operator of A

in the sense of Hilbert spaces.

In the following of this section, adjoint will always refer to the adjoint
in the sense of Hilbert spaces.

Proposition 6.30. Let H1,H2 be Hilbert spaces and A ∈ CL(H1,H2).
Then, A? is the adjoint of A iff

〈Ax, y〉H2 = 〈x,A?y〉H1 ∀x ∈ H1, y ∈ H2.
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Proof. Exercise.

In the following, we will omit subscripts indicating to which Hilbert space
a given inner product belongs as long as no confusion can arise.

Proposition 6.31. Let H1,H2,H3 be Hilbert spaces, A,B ∈ CL(H1,H2),
C ∈ CL(H2,H3), λ ∈ K.

1. (A+B)? = A? +B?.

2. (λA)? = λA?.

3. (C ◦A)? = A? ◦ C?.

4. (A?)? = A.

5. ‖A?‖ = ‖A‖.

6. ‖A ◦A?‖ = ‖A? ◦A‖ = ‖A‖2.

7. kerA = (A?(H2))⊥ and kerA? = (A(H1))⊥.

Proof. Exercise.

Definition 6.32. Let H1, H2 be Hilbert spaces and A ∈ CL(H1,H2). Then,
A is called unitary iff A is an isometric isomorphism.

Remark 6.33. It is clear that A ∈ CL(H1,H2) is unitary iff

〈Ax,Ay〉 = 〈x, y〉 ∀x, y ∈ H1.

Equivalently, A? ◦A = 1H1 or A ◦A? = 1H2 .

Definition 6.34. Let H be a Hilbert space and A ∈ CL(H,H). A is called
self-adjoint iff A = A?. A is called normal iff A? ◦A = A ◦A?.

Proposition 6.35. Let H be a Hilbert space and A ∈ CL(H,H) self-adjoint.
Then,

‖A‖ = sup
‖x‖≤1

|〈Ax, x〉|.

Proof. Set M := sup‖x‖≤1 |〈Ax, x〉|. Since |〈Ax, x〉| ≤ ‖Ax‖‖x‖ ≤ ‖A‖‖x‖2,
it is clear that ‖A‖ ≥ M . We proceed to show that ‖A‖ ≤ M . Given
x, y ∈ H arbitrary we have

〈A(x+ y), x+ y〉 − 〈A(x− y), x− y〉 = 2〈Ax, y〉 + 2〈Ay, x〉
= 2〈Ax, y〉 + 2〈y,Ax〉 = 4<〈Ax, y〉.
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Thus,

4<〈Ax, y〉 ≤ |〈A(x+ y), x+ y〉| + |〈A(x− y), x− y〉|
≤ M(‖x+ y‖2 + ‖x− y‖2) = 2M(‖x‖2 + ‖y‖2).

The validity of this for all x, y ∈ H in turn implies

<〈Ax, y〉 ≤ M‖x‖‖y‖ ∀x, y ∈ H.

Replacing x with λx for a suitable λ ∈ K with |λ| = 1 yields

|〈Ax, y〉| ≤ M‖x‖‖y‖ ∀x, y ∈ H.

Inserting now y = Ax we can infer

‖Ax‖ ≤ M‖x‖∀x ∈ H,

and hence ‖A‖ ≤ M , concluding the proof.

Proposition 6.36. Let H be a complex Hilbert space and A ∈ CL(H,H).
Then, the following are equivalent:

1. A is self-adjoint.

2. 〈Ax, x〉 ∈ R for all x ∈ H.

Proof. 1.⇒2.: For all x ∈ H we have 〈Ax, x〉 = 〈x,Ax〉 = 〈Ax, x〉. 2.⇒1.:
Let x, y ∈ H and λ ∈ C. Then,

〈A(x+ λy), x+ λy〉 = 〈Ax, x〉 + λ〈Ax, y〉 + λ〈Ay, x〉 + |λ|2〈Ay, y〉.

By assumption, the left-hand side as well as the first and the last term on
the right-hand side are real. Thus, we may equating the right hand side
with its complex conjugate yielding,

λ〈Ax, y〉 + λ〈Ay, x〉 = λ〈y,Ax〉 + λ〈x,Ay〉.

Since λ ∈ C is arbitrary, the terms proportional to λ and those proportional
to λ have to be equal separately, showing that A must be self-adjoint.

Corollary 6.37. Let H be a complex Hilbert space and A ∈ CL(H,H) such
that 〈Ax, x〉 = 0 for all x ∈ H. Then, A = 0.

Proof. By Proposition 6.36, A is self-adjoint. Then, by Proposition 6.35,
‖A‖ = 0.
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Exercise 38. Give a counter example to the above statement for the case
of a real Hilbert space.

Proposition 6.38. Let H be a Hilbert space and A ∈ CL(H,H) normal.
Then,

‖Ax‖ = ‖A?x‖ ∀x ∈ H.

Proof. For all x ∈ H we have,

0 = 〈(A? ◦A−A ◦A?)x, x〉 = 〈Ax,Ax〉 − 〈A?x,A?x〉 = ‖Ax‖2 − ‖A?x‖2.

Proposition 6.39. Let H be a Hilbert space and A ∈ CL(H,H) with A 6= 0
a projection operator, i.e., A ◦A = A. Then, the following are equivalent:

1. A is an orthogonal projector.

2. ‖A‖ = 1.

3. A is self-adjoint.

4. A is normal.

5. 〈Ax, x〉 ≥ 0 for all x ∈ H.

Proof. 1.⇒2.: This follows from Theorem 6.8.5. 2.⇒1.: Let x ∈ kerA,
y ∈ F := A(H) and λ ∈ K. Then,

‖λy‖2 = ‖A(x+ λy)‖2 ≤ ‖x+ λy‖2 = ‖x‖2 + 2<〈x, λy〉 + ‖λy‖2.

Since λ ∈ K is arbitrary we may conclude 〈x, y〉 = 0. That is, kerA ⊆ F⊥.
On the other hand set F̃ := (1 −A)(H) and note that F̃ ⊆ kerA. But since
1 = A + (1 − A) we must have F + F̃ = H. Given F̃ ⊆ F⊥ this implies
F̃ = F⊥ and hence kerA = F⊥. Observe also that F is closed since A is a
projector and hence F = ker(1 − A). By Theorem 6.8, A is an orthogonal
projector. 1.⇒3.: Using Theorem 6.8.2 and 6.8.7, observe for x, y ∈ H:

〈Ax, y〉 = 〈Ax,Ay− (Ay− y)〉 = 〈Ax,Ay〉 = 〈Ax− (Ax−x), Ay〉 = 〈x,Ay〉.

3.⇒4.: Immediate. 4.⇒1.: Combining Proposition 6.38 with Proposition 6.31
we have kerA = kerA? = (A(H))⊥. Note also that A(H) is closed since A
is a projector. Thus, by Theorem 6.8, A is an orthogonal projection. 3.⇒5.:
For x ∈ H observe

〈Ax, x〉 = 〈A ◦Ax, x〉 = 〈Ax,Ax〉 = ‖Ax‖2 ≥ 0.
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5.⇒1.: Let x ∈ kerA and y ∈ F := A(H). Then,

0 ≤ 〈A(x+ y), x+ y〉 = 〈y, x+ y〉 = ‖y‖2 + 〈y, x〉.

Since x can be scaled arbitrarily, we must have 〈y, x〉 = 0. Thus, kerA ⊆ F⊥.
As above we may conclude that A is an orthogonal projector.

Exercise 39. Let X be a normed vector space and Y a separable Hilbert
space. Show that KL(X,Y ) = CLfin(X,Y ). [Hint: Use Proposition 4.36
and show that the assumptions of Proposition 4.37 can be satisfied.]

Exercise 40. Let w ∈ C([0, 1],R) and consider the map 〈·, ·〉w : C([0, 1],C)×
C([0, 1],C) → C given by

〈f, g〉w :=
∫ 1

0
f(x)g(x)w(x)dx.

1. Give necessary and sufficient conditions for 〈·, ·〉w to be a scalar prod-
uct.

2. When is the norm induced by 〈·, ·〉w equivalent to the norm induced
by the usual scalar product

〈f, g〉 :=
∫ 1

0
f(x)g(x)dx?

Exercise 41. Let S be a set and H ⊆ F (S,K) a subspace of the functions
on S with values in K. Suppose that an inner product is given on H that
makes it into a Hilbert space. Let K : S × S → K and define Kx : S → K
by Kx(y) := K(y, x). Then, K is called a reproducing kernel iff Kx ∈ H for
all x ∈ S and f(x) = 〈f,Kx〉 for all x ∈ S and f ∈ H. Show the following:

1. If a reproducing kernel exists, it is unique.

2. A reproducing kernel exists iff the topology of H is finer than the
topology of pointwise convergence.

3. If K is a reproducing kernel, then span({Kx}x∈S) is dense in H.

4. Let H be the two-dimensional subspace of L2([0, 1],K) consisting of
functions of the form x 7→ ax+ b. Determine its reproducing kernel.
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7 C?-Algebras

7.1 The commutative Gelfand-Naimark Theorem

In the same sense as Banach algebras may be seen as an abstraction of the
space of continuous operators on a Banach space, we can abstract the con-
cept of continuous operators on a Hilbert space. Of course, a Hilbert space is
in particular a Banach space. So the algebras we are looking for are in par-
ticular Banach algebras. The additional structure of interest coming from
Hilbert spaces is that of an adjoint. As in the section about Banach algebras
we work in the following exclusively over the field of complex numbers.

Definition 7.1. Let A be an algebra over C. Consider a map ? : A → A
with the following properties:

• (a+ b)? = a? + b? for all a, b ∈ A.

• (λa)? = λa? for all λ ∈ C and a ∈ A.

• (ab)? = b?a? for all a, b ∈ A.

• (a?)? = a for all a ∈ A.

Then, ? is called an (anti-linear anti-multiplicative) involution.

Definition 7.2. Let A be a Banach algebra with involution ? : A → A such
that ‖a?a‖ = ‖a‖2. Then, A is called a C?-algebra. For an element a ∈ A,
the element a? is called its adjoint. If a? = a, then a is called self-adjoint.
If a?a = aa?, then a is called normal.

Exercise 42. Let A be a C?-algebra. (a) Show that ‖a?‖ = ‖a‖ and ‖aa?‖ =
‖a‖2 for all a ∈ A. (b) If e ∈ A is a unit, show that e? = e. (c) If a ∈ A is
invertible, show that a? is also invertible.

Exercise 43. Let A be a unital C?-algebra and a ∈ A. Show that σA(a?) =
σA(a).

Exercise 44. Let X be a Hilbert space. (a) Show that CL(X,X) is a unital
C?-algebra. (b) Show that KL(X,X) is a C?-ideal in CL(X,X).

Exercise 45. Let A be a C?-algebra and a ∈ A. Show that there is a unique
way to write a = b+ ic so that b and c are self-adjoint.

Exercise 46. Let T be a compact topological space. Show that the Banach
algebra C(T,C) of Exercise 30 is a C?-algebra, where the involution is given
by complex conjugation.
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Proposition 7.3. Let A be a C?-algebra and a ∈ A normal. Then, ‖a2‖ =
‖a‖2 and rA(a) = ‖a‖.

Proof. We have ‖a2‖2 = ‖(a2)?(a2)‖ = ‖(a?a)?(a?a)‖ = ‖a?a‖2 = (‖a‖2)2.
This implies the first statement. Also, this implies ‖a2k‖ = ‖a‖2k for all
k ∈ N and hence limn→∞ ‖an‖1/n = ‖a‖ if the limit exists. But by Proposi-
tion 5.11 the limit exists and is equal to rA(a).

Proposition 7.4. Let A be a C?-algebra and a ∈ A self-adjoint. Then,
σA(a) ⊂ R.

Proof. Take α + iβ ∈ σA(a), where α, β ∈ R. Thus, for any λ ∈ R we have
α + i(β + λ) ∈ σA(a + iλe). By Proposition 5.6 we have |α + i(β + λ)| ≤
‖a+ iλe‖. We deduce

α2 + (β + λ)2 = |α+ i(β + λ)|2

≤ ‖a+ iλe‖2

= ‖(a+ iλe)?(a+ iλe)‖
= ‖(a− iλe)(a+ iλe)‖
= ‖a2 + λ2e‖
≤ ‖a2‖ + λ2

Subtracting λ2 on both sides we are left with α2 + β2 + 2βλ ≤ ‖a2‖. Since
this is satisfied for all λ ∈ R we conclude β = 0.

Proposition 7.5. Let A be a unital C?-algebra. Then, the Gelfand trans-
form A → C(ΓA,C) is a continuous unital C?-algebra homomorphism. More-
over, its image is dense in C(ΓA,C).

Proof. By Theorem 5.27, the Gelfand transform is a continuous unital al-
gebra homomorphism. We proceed to show that it respects the ?-structure.
Let a ∈ A be self-adjoint. Then, combining Proposition 5.26 with Proposi-
tion 7.4 we get â(φ) = φ(a) ∈ σA(a) ⊂ R for all φ ∈ ΓA. So â is real-valued,
i.e., self-adjoint. In particular, â? = â?. Using the decomposition of Exer-
cise 45 this follows for general elements of A. (Explain!)

It remains to show that the image Â of the Gelfand transform is dense.
It is clear that Â separates points of ΓA by construction, vanishes nowhere
(as it contains a unit) and is invariant under complex conjugation (as it
is the image of a ?-algebra homomorphism). Thus, the Stone-Weierstrass
Theorem 4.10 ensures that Â is dense in C(ΓA,C).
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Theorem 7.6 (Gelfand-Naimark). Let A be a unital commutative C?-algebra.
Then, the Gelfand transform A → C(ΓA,C) is an isometric isomorphism of
unital commutative C?-algebras.

Proof. Using Proposition 7.5 it remains to show that the Gelfand transform
is isometric. Surjectivity then follows from the fact that the isometric image
of a complete set is complete and hence closed. Since A is commutative all
its elements are normal. Then, by Proposition 7.3, ‖a2‖ = ‖a‖2 and we can
apply Proposition 5.28 to conclude isometry.

The Gelfand-Naimark Theorem 7.6 (in view of Exercise 33) gives rise to
a one-to-one correspondence between compact Hausdorff spaces and unital
commutative C?-algebras.

Theorem 7.7. The category of compact Hausdorff spaces is naturally equiv-
alent to the category of unital commutative C?-algebras.

Proof. Exercise.

Before we proceed we need a few more results about C?-algebras.

Proposition 7.8. Let A be a unital C?-algebra and a ∈ A normal. Define B
to be the unital C?-subalgebra of A generated by a. Then, B is commutative
and the Gelfand transform â of a defines a homeomorphism onto its image,
ΓB → σB(a) which we denote by ã.

Proof. B consists of possibly infinite linear combinations of elements of the
form (a?)man where n,m ∈ N0 (and a0 = (a?)0 = e). In particular, B
is commutative. Consider the Gelfand transform â : ΓB → C of a in B.
Suppose â(φ) = â(ψ) for φ, ψ ∈ ΓB. Then, φ(a) = ψ(a), but also

φ(a?) = â?(φ) = â(φ) = â(ψ) = â?(ψ) = ψ(a?),

using Proposition 7.5. Thus, φ is equal to ψ on monomials (a?)man by
multiplicativity and hence on all of B by linearity and continuity. This
shows that â is injective. By Proposition 5.26 the image of â is σB(a).
Thus, â is a continuous bijective map â : ΓB → σB(a). With Lemma 1.41 it
is even a homeomorphism.

Proposition 7.9. Let A be a unital C?-algebra and a ∈ A. Let B be a
unital C?-subalgebra containing a. Then, σB(a) = σA(a).
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Proof. It is clear that σA(a) ⊆ σB(a). It remains to show that if b := λe− a
for any λ ∈ C has an inverse in A then this inverse is also contained in B.

Assume first that a (and hence b) is normal. We show that b−1 is even
contained in the unital C?-subalgebra C of B that is generated by b. Suppose
that b−1 is not contained in C and hence 0 ∈ σC(b). Choose m > ‖b−1‖
and define a continuous function f : σC(b) → C such that f(0) = m and
|f(x)x| ≤ 1 for all x ∈ σC(b). Using Theorem 7.6 and Proposition 7.8 there
is a unique element c ∈ C such that ĉ = f ◦ b̃. Observe also that b̂ = i ◦ b̃,
where i : σC(b) → C is the inclusion map x 7→ x and hence ĉb̂ = (f · i) ◦ b̃.
Using Theorem 7.6 we find

m ≤ ‖f‖ = ‖c‖ = ‖cbb−1‖ ≤ ‖cb‖‖b−1‖ = ‖f · i‖‖b−1‖ ≤ ‖b−1‖.

This contradicts m > ‖b−1‖. So 0 /∈ σC(b) and b−1 ∈ C as was to be
demonstrated. This concludes the proof for the case that a is normal.

Consider now the general case. If b is not invertible in B then by
Lemma 5.7 at least one of the two elements b?b or bb? is not invertible in
B. Suppose b?b is not invertible in B (the other case proceeds analogously).
b?b is self-adjoint and in particular normal so the version of the proposition
already proofed applies and σA(b?b) = σB(b?b). In particular, b?b is not
invertible in A and hence b cannot be invertible in A. This completes the
proof.

7.2 Spectral decomposition of normal operators

Proposition 7.10 (Spectral Theorem for Normal Elements). Let A be a
unital C?-algebra and a ∈ A normal. Then, there exists an isometric homo-
morphism of unital ?-algebras φ : C(σA(a),C) → A such that φ(1) = a.

Proof. Exercise.Hint: Combine Proposition 7.8 with Theorem 7.6.

Of course, an important application of this is the case when A is the
algebra of continuous operators on some Hilbert space and a is a normal
operator.

In the context of this proposition we also use the notation f(a) := φ(f)
for f ∈ C(σA(a),C). We use the same notation if f is defined on a larger
subset of the complex plane.

Corollary 7.11 (Continuous Spectral Mapping Theorem). Let A be a unital
C?-algebra, a ∈ A normal and f : T → C continuous such that σA(a) ⊆ T .
Then, σA(f(a)) = f(σA(a)).
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Proof. Exercise.

Corollary 7.12. Let A be a unital C?-algebra and a ∈ A normal. Fur-
thermore, let f : σA(a) → C and g : f(σA(a)) → C continuous. Then
(g ◦ f)(a) = g(f(a)).

Proof. Exercise.

Definition 7.13. Let A be a unital C?-algebra. If u ∈ A is invertible and
satisfies u? = u−1 we call u unitary. If p ∈ A is self-adjoint and satisfies p2 =
p we call it an orthogonal projector. (Exercise.Justify this terminology!)

Exercise. Let A be a unital C?-algebra.

1. Let u ∈ A be unitary. What can you say about σA(u)?

2. Let p ∈ A be an orthogonal projector. Show that σA(p) ⊆ {0, 1}.

3. Let a ∈ A be normal and σA(a) ⊂ R. Show that a is self-adjoint.

Proposition 7.14. Let A be a unital C?-algebra and a ∈ A normal. Suppose
the spectrum of a is the disjoint union of two non-empty subsets σA(a) =
s1 ∪ s2. Then, there exist a1, a2 ∈ A normal, such that σA(a1) = s1 and
σA(a2) = s2 and a = a1 + a2. Moreover, a1a2 = a2a1 = 0 and a commutes
both with a1 and a2.

Proof. Exercise.

Proposition 7.15. Let H be a Hilbert space, A := CL(H,H) and k ∈
KL(H,H) normal. Then, there exists an orthogonal projector pλ ∈ A for
each λ ∈ σA(k) such that pλpλ′ = 0 if λ 6= λ′ and

k =
∑

λ∈σA(k)
λpλ and e =

∑
λ∈σA(k)

pλ.

Proof. Exercise. (Explain also in which sense the sums converge!)

7.3 Positive elements and states

We now move towards a characterization of noncommutative C?-algebras.
We are going to show that any unital C?-algebra is isomorphic to a C?-
subalgebra of the algebra of continuous operators on some Hilbert space.

Definition 7.16. Let A be a unital C?-algebra. A self-adjoint element
a ∈ A is called positive iff σA(a) ⊂ [0,∞).
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Exercise 47. Let T be a compact Hausdorff space and consider the C?-
algebra C(T,C). Show that the self-adjoint elements are precisely the real
valued functions and the positive elements are the functions with non-
negative values.

Proposition 7.17. Let A be a unital C?-algebra and a, b ∈ A positive.
Then, a+ b is positive.

Proof. Suppose λ ∈ σA(a+ b). Since a and b are self-adjoint so is a+ b. In
particular, σA(a + b) ⊂ R and λ is real. Set α := ‖a‖ and β := ‖b‖. Then,
(α+β)−λ ∈ σA((α+β)e−(a+b)) and thus |(α+β)−λ| ≤ rA((α+β)e−(a+b))
by Theorem 5.13. But the element (α + β)e − (a + b) is normal (and even
self-adjoint), so Proposition 7.3 applies and we have rA((α+β)e− (a+b)) =
‖(α+ β)e− (a+ b)‖ ≤ ‖αe− a‖ + ‖βe− b‖. Again using Proposition 7.3 we
find ‖αe− a‖ = rA(αe− a) and ‖βe− b‖ = rA(βe− b). But σA(a) ⊆ [0, α]
by positivity and Proposition 5.6. Thus, σA(αe − a) ⊆ [0, α]. Hence, by
Theorem 5.13, rA(αe−a) ≤ α. In the same way we find rA(βe−b) ≤ β. We
have thus demonstrated the inequality |(α + β) − λ| ≤ α + β. This implies
λ ≥ 0, completing the proof.

Proposition 7.18. Let A be a unital C?-algebra and a ∈ A self-adjoint.
Then, there exist positive elements a+, a− ∈ A such that a = a+ − a− and
a+a− = a−a+ = 0.

Proof. Exercise. Hint: Consider the unital C?-subalgebra generated by a.

Proposition 7.19. Let A be a unital C?-algebra and a ∈ A. Then, a is
positive iff there exists b ∈ A such that a = b?b.

Proof. Exercise.

Lemma 7.20. Let A be a unital C?-algebra and a ∈ A positive and such
that ‖a‖ ≤ 1. Then, e− a is positive and ‖e− a‖ ≤ 1.

Proof. Exercise.

A similar role to that played by the characters in the theory of commu-
tative C?-algebras is now played by states.

Definition 7.21. Let A be a unital C?-algebra. A continuous linear func-
tional ω : A → C is called positive iff ω(a) ≥ 0 for all positive elements
a ∈ A. A positive functional ω : A → C is called a state iff it is normalized,
i.e., iff ‖ω‖ = 1. The set ΣA of states of A is called the state space of A.
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Exercise 48. Let A be a unital C?-algebra. Show that ΓA ⊆ ΣA, i.e., each
character is in particular a state.

Proposition 7.22. Let A be a unital C?-algebra and ω a positive functional
on A. Then ω(a?) = ω(a) for all a in A. In particular, ω(a) ∈ R if a is
self-adjoint.

Proof. Exercise.

Proposition 7.23. Let A be a unital C?-algebra and ω a positive functional
on A. Consider the map [·, ·]ω : A×A → C given by [a, b]ω = ω(b?a). It has
the following properties:

1. [·, ·]ω is a sesquilinear form on A.

2. [a, b]ω = [b, a]ω for all a, b ∈ A.

3. [a, a]ω ≥ 0 for all a ∈ A.

Proof. Exercise.

This shows that we almost have a scalar product, only the definiteness
condition is missing. Nevertheless we have the Cauchy-Schwarz inequality.

Proposition 7.24. Let A be a unital C?-algebra and ω a non-zero positive
functional on A. The following is true:

1. |[a, b]ω|2 ≤ [a, a]ω[b, b]ω for all a, b ∈ A.

2. Let a ∈ A. Then, [a, a]ω = 0 iff [a, b]ω = 0 for all b ∈ A.

3. [ab, ab]ω ≤ ‖a‖2[b, b]ω for all a, b ∈ A.

Proof. Exercise.

Proposition 7.25. Let A be a unital C?-algebra and ω : A → C continuous
and linear. Then, ω is a positive functional iff ‖ω‖ = ω(e).

Proof. Suppose that ω is a positive functional. Given ε > 0 there exists
a ∈ A with ‖a‖ = 1 such that ‖ω(a)‖2 ≥ ‖ω‖2 − ε. Using the Cauchy-
Schwarz inequality (Proposition 7.24.1) with b = e we find

‖ω(a)‖2 ≤ ω(a?a)ω(e) ≤ ‖ω‖‖a?a‖ω(e) = ‖ω‖ω(e).

Combining this with the first inequality we get ‖ω‖2 − ε ≤ ‖ω‖ω(e). Since
ε was arbitrary this implies ‖ω‖ ≤ ω(e). On the other hand, the inequality
ω(e) ≤ ‖ω‖ is clear.
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Conversely, suppose now that ω is a continuous linear functional with
the property ‖ω‖ = ω(e). Without loss of generality we normalize ω such
that ω(e) = 1 = ‖ω‖. We first show that ω(a) ∈ R if a ∈ A is self-adjoint.
Assume the contrary, i.e., assume there exists a ∈ A such that ω(a) = x+iy
with x, y ∈ R and y 6= 0. Set b := a − xe. Then, b is self-adjoint and
ω(b) = iy. For λ ∈ R we get,

|ω(b+ iλe)|2 = |iy + iλω(e)|2 = y2 + 2λy + λ2.

One the other hand,

|ω(b+ iλe)|2 ≤ ‖ω‖2‖b+ iλe‖2 = ‖(b+ iλe)?(b+ iλe)‖ ≤ ‖b‖2 + λ2.

The resulting inequality is equivalent to,

y2 + 2λy ≤ ‖b‖2,

which obviously cannot be fulfilled for arbitrary λ ∈ R (recall that y 6= 0),
giving a contradiction. This shows that ω(a) ∈ R if a ∈ A is self-adjoint.

We proceed to show that ω(a) ≥ 0 if a ∈ A is positive. Assume the
contrary, i.e., assume there is a ∈ A positive such that ω(a) < 0. (Note that
ω(a) ∈ R by the previous part of the proof.) By suitable normalization we
can achieve ‖a‖ ≤ 1 as well. By Lemma 7.20 we have ‖e− a‖ ≤ 1 and thus
|ω(e−a)| ≤ 1 since ‖ω‖ = 1. On the other hand, |ω(e−a)| = |1−ω(a)| > 1,
a contradiction. This shows that ω must be positive.

Proposition 7.26. Let A be a unital C?-algebra and a ∈ A positive. Then,
there exists a state ω ∈ ΣA such that ω(a) = ‖a‖.

Proof. Since a is positive we have σA(a) ⊆ [0,∞). Moreover, a is normal,
so by Proposition 7.3 we have rA(a) = ‖a‖. Thus, ‖a‖ ∈ σA(a). Let B
be the unital C?-subalgebra of A generated by a. By Proposition 7.9 we
have σB(a) = σA(a) and in particular ‖a‖ ∈ σB(a). By Proposition 7.8,
â induces a homeomorphism ΓB → σB(a). In particular, there exists a
character φ ∈ ΓB such that ‖a‖ = â(φ) = φ(a). Recall that φ(e) = 1 and
‖φ‖ = 1 by Proposition 5.22. By the Hahn-Banach Theorem (Corollary 3.31)
there exists an extension of φ to a linear functional ω : A → C such that
ω|B = φ and ‖ω‖ = 1. Note in particular that ω(e) = 1 = ‖ω‖. So by
Proposition 7.25, ω ∈ ΣA.
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7.4 The GNS construction

Proposition 7.27. Let A be a unital C?-algebra and ω a state on A. Define
Iω := {a ∈ A : [a, a]ω = 0} ⊆ A. Then, Iω is a left ideal of the algebra A.
In particular, the quotient vector space A/Iω is an inner product space with
the induced sesquilinear form.

Proof. Exercise.

Definition 7.28. Let A be a unital C?-algebra and ω a state on A. We call
the completion of the inner product space A/Iω the Hilbert space associated
with the state ω and denote it by Hω. We denote its scalar product by
〈·, ·〉ω : Hω ×Hω → C.

A consequence of the fact that A/Iω is a left ideal is that we have a
representation of A on this space and its completion from the left.

Definition 7.29. Let A be a unital C?-algebra and H a Hilbert space. A
homomorphism of unital ?-algebras A → CL(H,H) is called a representation
of A. A representation that is injective is called faithful. A representation
that is surjective is called full.

Proposition 7.30. Let A,B be unital C?-algebras and φ : A → B a homo-
morphism of unital ?-algebras.

1. ‖φ(a)‖ ≤ ‖a‖ for all a ∈ A. In particular, φ is continuous.

2. If φ is injective then it is isometric.

Proof. Exercise.

Theorem 7.31. Let A be a unital C?-algebra and ω a state on A. Then,
there is a natural representation πω : A → CL(Hω,Hω). Moreover,

‖πω(a)‖2 ≥ ω(a?a) ∀a ∈ A,

and ‖πω‖ = 1.

Proof. Define the linear maps π̃ω(a) : A/Iω → A/Iω by left multiplica-
tion, i.e., π̃ω(a) : [b] 7→ [ab]. That π̃ω(a) is well defined follows from
Proposition 7.27 (Iω is a left ideal). By definition we have then π̃ω(ab) =
π̃ω(a) ◦ π̃ω(b) and π̃ω(e) = 1A/Iω

. Furthermore, ‖π̃ω(a)‖ ≤ ‖a‖ due to
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Proposition 7.24.3 and hence π̃ω(a) is continuous. So we have a homomor-
phism of unital algebras π̃ω : A → CL(A/Iω, A/Iω). Also, π̃ω preserves the
?-structure because,

〈π̃ω(a?)[b], [c]〉ω = [a?b, c]ω = ω(c?a?b) = [b, ac]ω = 〈[b], π̃ω(a)[c]〉ω.

Since π̃ω(a) is continuous it extends to a continuous operator πω(a) : Hω →
Hω on the completion Hω of A/Iω, with the same properties. In particular,
πω is a homomorphism of unital ?-algebras.

Due to the bound ‖π̃ω(a)‖ ≤ ‖a‖ and hence ‖πω(a)‖ ≤ ‖a‖ (or due to
Proposition 7.30.1) we find ‖πω‖ ≤ 1. Observe also that ω(e) = 1 By Propo-
sition 7.25 and hence ‖πω(a)‖2 ≥ [ae, ae]ω/[e, e]ω = ω(a?a). In particular,
‖πω‖ ≥ ‖πω(e)‖ ≥ 1. Thus, ‖πω‖ = 1.

The construction leading to the Hilbert spaces Hω and this representa-
tion is called the GNS-construction (Gelfand-Naimark-Segal).

Definition 7.32. Let A be a unital C?-algebra, H a Hilbert space and
φ : A → CL(H,H) a representation. A vector ψ ∈ H is called a cyclic
vector iff {φ(a)ψ : a ∈ A} is dense in H. The representation is then called
a cyclic representation.

Proposition 7.33. Let A be a unital C?-algebra and ω a state on A. Then,
there is a cyclic vector ψ ∈ Hω with the property ω(a) = 〈πω(a)ψ,ψ〉ω for
all a ∈ A.

Proof. Exercise.

A deficiency of the representation of Theorem 7.31 is that it is neither
faithful nor full in general. Lack of faithfulness can be remedied. The idea
is that we take the direct sum of the representations πω for all normalized
states ω.

Proposition 7.34. Let {Hα}α∈I be a family of Hilbert spaces. Consider col-
lections ψ of elements ψα ∈ Hα with α ∈ I such that supJ⊆I

∑
α∈J ‖ψα‖2 <

∞ where J ranges over all finite subsets of I. Then, the set H of such
collections ψ is naturally a Hilbert space and we have isometric embeddings
Hα → H for all α ∈ I.

Proof. Exercise.

Definition 7.35. The Hilbert space H constructed in the preceding Propo-
sition is called the direct sum of the Hilbert spaces Hα and is denoted⊕

α∈I Hα.
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Proposition 7.36. Let A be a unital C?-algebra, {Hα}α∈I a family of
Hilbert spaces and φα : A → CL(Hα, Hα) a representation for each α ∈ I.
Then, there exists a representation φ : A → CL(H,H) such that ‖φ(a)‖ =
supα∈I ‖φα(a)‖ for all a ∈ A, where H :=

⊕
α∈I Hα.

Proof. Exercise.

We are now ready to put everything together.

Theorem 7.37 (Gelfand-Naimark). Let A be a unital C?-algebra. Then,
there exists a Hilbert space H and a faithful representation π : A → CL(H,H).

Proof. Exercise.

This result concludes our characterization of the structure of C?-algebras:
Each C?-algebra arises as a C?-subalgebra of the algebra of continuous op-
erators on some Hilbert space.

Exercise 49. Let A be a unital C?-algebra, H1,H2 Hilbert spaces, φ1 :
A → CL(H1,H1) and φ2 : A → CL(H2,H2) cyclic representations. Suppose
that 〈φ1(a)ψ1, ψ1〉1 = 〈φ2(a)ψ2, ψ2〉2 for all a ∈ A, where ψ1, ψ2 are the
cyclic vectors in H1 and H2 respectively. Show that there exists a unitary
operator (i.e., an invertible linear isometry) W : H1 → H2 such that φ(a) =
W ?ψ(a)W for all a ∈ A.
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